8. On Conformal Diffeomorphisms between Product Riemannian Manifolds

By Yoshihiro TASHIRO

Department of Mathematics, Hiroshima University

(Communicated by Kunihiko KODAIRA, M. J. A., Jan. 12, 1981)

In this note, a conformal diffeomorphism means a non-homothetic conformal one. Let $M = M_1 \times M_2$ and $M^* = M_1^* \times M_2^*$ be connected product Riemannian manifolds of dimension $n \ge 3$, and denote the metric product structures by (M, g, F) and (M^*, g^*, G) respectively. Several geometers [1]–[3], [5]–[8] proved non-existence of global conformal diffeomorphism between complete product Riemannian manifolds with certain properties. The purpose of this note is to announce the following

Theorem. If M and M^{*} are complete product Riemannian manifolds, then there is no global conformal diffeomorphism of M onto M^{*} such that it does not commute the product structures F and G, FG \neq GF, somewhere in M.

This is an improvement of the main theorem in a previous paper [5]. As the contraposition, a conformal diffeomorphism of M onto M^* has to commute the product structures F and G everywhere in M, and an example of such a conformal diffeomorphism was given in [5].

Outline of the proof. Let M_1 and M_2 be of dimension n_1 and n_2 respectively, $n_1+n_2=n$, and (x^i, x^p) a separate coordinate system of M, (x^i) belonging to M_1 and (x^p) to M_2 . Latin indices run on

i, *j*, $k=1, 2, ..., n_1$; *p*, *q*, $r=n_1+1, ..., n$ respectively, and Greek indices κ , λ , μ , ν on the range 1 to *n*. The metric tensor $g=(g_{\mu\lambda})$ of *M* has pure components g_{ji} and g_{qp} only with respect to the separate coordinate system (x^i, x^p) .

A conformal diffeomorphism f of M to M^* is characterized by a change of the metric tensors

(1)
$$g^*_{\mu\lambda} = \frac{1}{\rho^2} g_{\mu\lambda},$$

 ρ being a positive-valued scalar field. The integrability of the product structure G with respect to g^* in M^* is equivalent to

(2)
$$\nabla_{\mu}G_{\lambda\kappa} = -\frac{1}{\rho} (G_{\mu\lambda}\rho_{\kappa} + G_{\mu\kappa}\rho_{\lambda} - g_{\mu\lambda}G_{\kappa\nu}\rho^{\nu} - g_{\mu\kappa}G_{\lambda\nu}\rho^{\nu}),$$

where \mathcal{V} indicates covariant differentiation in M and $\rho_{\lambda} = \mathcal{V}_{\lambda}\rho$, $\rho^{\nu} = \rho_{\lambda}g^{\lambda\nu}$. Denote the gradient vector field (ρ^{λ}) by Y, the parts (ρ^{i}) along to M_{1} by Y_{1} and (ρ^{p}) to M_{2} by Y_{2} . Put $\Phi = |Y|^{2} = \rho_{\lambda}\rho^{\lambda} = |Y_{1}|^{2} + |Y_{2}|^{2}$ and