88. On the Galois Cohomology Groups of C_K/D_K

By Shin-ichi KATAYAMA

Department of Mathematics, Kyoto University

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1981)

1. Let k be an algebraic number field and K be its finite Galois extension of degree n with the group G. We denote by C_{κ} and D_{κ} the idele class group of K and its connected component of the unity respectively. In this note, we shall determine the structure of the cohomology group $H^{p}(G, C_{\kappa}/D_{\kappa})$ for non-negative integer p. For cohomology groups and the morphisms concerned with them, we shall use the notation and terminology as is given in S. Iyanaga [3].

2. In this section, p denotes an arbitrary integer. Let us denote the idele group of K by J_K and its connected component of the unity by H_K . We denote by E the set of all imaginary places of K. Then the maximal compact subgroup of H_K is given by $H'_K = \{x = (x_p) \in J_K | x_p = 1 \text{ if } p \in E, |x_p| = 1 \text{ if } p \in E\}$. Let us denote the canonical homomorphism from J_K to C_K by φ and $\varphi(H'_K)$ by D'_K . Then we have the following exact sequence

$$(1) 1 \longrightarrow H'_{\kappa} \xrightarrow{\varphi} C_{\kappa} \xrightarrow{\psi} C_{\kappa}/D'_{\kappa} \longrightarrow 1.$$

By cohomology sequences belonging to (1) and the fact that $H^{q}(G, H'_{\kappa}) = 0$ if q is odd, we have

$$(2) \qquad \begin{array}{c} 0 \longrightarrow H^{2p+1}(C_{K}) \longrightarrow H^{2p+1}(C_{K}/D'_{K}) \longrightarrow H^{2p+2}(H'_{K}) \\ \longrightarrow H^{2p+2}(C_{K}) \longrightarrow H^{2p+2}(C_{K}/D'_{K}) \longrightarrow 0 \quad (exact). \end{array}$$

Here we have abbreviated $H^{q}(G, A)$ to $H^{q}(A)$ for a G-module A. Since D_{κ}/D'_{κ} is uniquely divisible, we obtain the isomorphism

$$(3) H^p(G, C_K/D_K) \cong H^p(G, C_K/D'_K).$$

Hereafter, by virtue of (3), we shall only be concerned with the determination of $H^p(G, C_{\kappa}/D'_{\kappa})$ instead of $H^p(G, C_{\kappa}/D_{\kappa})$.

Let $\{\mathfrak{p}_i | 1 \leq i \leq r\}$ be the set of all real places of k which ramify in K. If r=0, it follows from (2) that

 $H^p(G, C_{\kappa}/D'_{\kappa})\cong H^p(G, C_{\kappa})\cong H^{p-2}(G, \mathbb{Z}).$

Therefore, in the following, we exclude this case and shall treat only the case r>0. This implies that n is even, so we put $m=n/2 \in \mathbb{Z}$.

Let \mathfrak{P}_i be one of the extensions of \mathfrak{P}_i to K, and N_i be the decomposition group of \mathfrak{P}_i . Let us denote the transfer homomorphism from N_i to G and the restriction from G to N_i on cohomology groups by $\tau^{N_i,G}$ and ρ^{G,N_i} respectively. Since $H^{2p}(G, H'_K)$ is generated by $\tau^{N_i,G}H^{2p}(N_i, H'_K)$, we obtain the following lemma.