88. On the Galois Cohomology Groups of C_{K} / D_{K}

By Shin-ichi Katayama
Department of Mathematics, Kyoto University
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 1981)

1. Let k be an algebraic number field and K be its finite Galois extension of degree n with the group G. We denote by C_{K} and D_{K} the idele class group of K and its connected component of the unity respectively. In this note, we shall determine the structure of the cohomology group $H^{p}\left(G, C_{K} / D_{K}\right)$ for non-negative integer p. For cohomology groups and the morphisms concerned with them, we shall use the notation and terminology as is given in S. Iyanaga [3].
2. In this section, p denotes an arbitrary integer. Let us denote the idele group of K by J_{K} and its connected component of the unity by H_{K}. We denote by E the set of all imaginary places of K. Then the maximal compact subgroup of H_{K} is given by $H_{K}^{\prime}=\left\{x=\left(x_{p}\right) \in J_{K} \mid x_{\mathfrak{p}}\right.$ $=1$ if $\mathfrak{p} \oplus E,\left|x_{\mathfrak{p}}\right|=1$ if $\left.\mathfrak{p} \in E\right\}$. Let us denote the canonical homomorphism from J_{K} to C_{K} by φ and $\varphi\left(H_{K}^{\prime}\right)$ by D_{K}^{\prime}. Then we have the following exact sequence

$$
\begin{equation*}
1 \longrightarrow H_{K}^{\prime} \xrightarrow{\varphi} C_{K} \xrightarrow{\psi} C_{K} / D_{K}^{\prime} \longrightarrow 1 . \tag{1}
\end{equation*}
$$

By cohomology sequences belonging to (1) and the fact that $H^{q}\left(G, H_{K}^{\prime}\right)$ $=0$ if q is odd, we have

$$
\begin{align*}
& 0 \longrightarrow H^{2 p+1}\left(C_{K}\right) \longrightarrow H^{2 p+1}\left(C_{K} / D_{K}^{\prime}\right) \longrightarrow H^{2 p+2}\left(H_{K}^{\prime}\right) \tag{2}\\
& \longrightarrow H^{2 p+2}\left(C_{K}\right) \longrightarrow H^{2 p+2}\left(C_{K} / D_{K}^{\prime}\right) \longrightarrow 0 \quad \text { (exact). }
\end{align*}
$$

Here we have abbreviated $H^{q}(G, A)$ to $H^{q}(A)$ for a G-module A.
Since D_{K} / D_{K}^{\prime} is uniquely divisible, we obtain the isomorphism

$$
\begin{equation*}
H^{p}\left(G, C_{K} / D_{K}\right) \cong H^{p}\left(G, C_{K} / D_{K}^{\prime}\right) \tag{3}
\end{equation*}
$$

Hereafter, by virtue of (3), we shall only be concerned with the determination of $H^{p}\left(G, C_{K} / D_{K}^{\prime}\right)$ instead of $H^{p}\left(G, C_{K} / D_{K}\right)$.

Let $\left\{\mathfrak{p}_{i} \mid 1 \leqq i \leqq r\right\}$ be the set of all real places of k which ramify in K. If $r=0$, it follows from (2) that

$$
H^{p}\left(G, C_{K} / D_{K}^{\prime}\right) \cong H^{p}\left(G, C_{K}\right) \cong H^{p-2}(G, Z)
$$

Therefore, in the following, we exclude this case and shall treat only the case $r>0$. This implies that n is even, so we put $m=n / 2 \in \boldsymbol{Z}$.

Let \Re_{i} be one of the extensions of \mathfrak{p}_{i} to K, and N_{i} be the decomposition group of $\mathfrak{\Re}_{i}$. Let us denote the transfer homomorphism from N_{i} to G and the restriction from G to N_{i} on cohomology groups by $\tau^{N_{i}, G}$ and $\rho^{G, N_{i}}$ respectively. Since $H^{2 p}\left(G, H_{K}^{\prime}\right)$ is generated by $\tau^{N_{i}, G} H^{2 p}\left(N_{i}, H_{K}^{\prime}\right)$, we obtain the following lemma.

