85. Class Number Calculation and Elliptic Unit. III Sextic Case

By Ken NAKAMULA

Department of Mathematics, Tokyo Metropolitan University (Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1981)

In our preceding notes [2] and [3], we have introduced an effective method to calculate the class number of a certain cubic or quartic field utilizing its elliptic unit. In the following, we shall treat the same problem for a sextic field.

Let K be a real sextic number field which is not totally real and which contains a (real) quadratic subfield K_2 and a cubic subfield K_3 . Let D(>0), h and E_+ respectively be the discriminant, the class number and the group of positive units of K. Further, let h_2 and h_3 be the class numbers of K_2 and K_3 respectively. We shall give a way to compute h/h_2h_3 and E_+ at a time by using the "elliptic unit" of K.

§ 1. Illustration of algorithm. Let η_2 and η_3 be the fundamental units (>1) of K_2 and K_3 respectively, and let H_+ be the group of positive units of K, i.e.

$$H_{\scriptscriptstyle +} := \{ \varepsilon \in E_{\scriptscriptstyle +} | N_{\scriptscriptstyle K/K_2}(\varepsilon) = N_{\scriptscriptstyle K/K_3}(\varepsilon) = 1 \}.$$

Then, as in [1], there is the relative fundamental unit ε_1 (>1) in H_+ , i.e. $H_+ = \langle \varepsilon_1 \rangle$, and ε_1 generates E_+ together with two other independent units. More precisely,

$$E_{+} = \langle \varepsilon_{1} \rangle \times \langle \varepsilon_{2} \rangle \times \langle \varepsilon_{3} \rangle$$

with

(1)
$$\varepsilon_2 = \sqrt[3]{\eta_2}, \quad \sqrt[3]{\eta_2^{\pm 1}\varepsilon_1} \text{ or } \eta_2,$$

$$(2) \qquad \qquad \varepsilon_3 = \sqrt{\eta_3} \varepsilon_1 \qquad \text{or } \eta_3.$$

Let η be the elliptic unit of K, of which the definition will be given in §5. Then, applying the results in Schertz [5], we see that $\eta > 1$ and $\eta \in H_+$, and obtain the following formula:

$$(3) h/h_2h_3 = (E_+: \langle \varepsilon_1, \eta_2, \eta_3 \rangle)(H_+: \langle \eta \rangle)/6.$$

Therefore, the calculation of h/h_2h_3 is reduced to the determination of the group index $(H_+:\langle\eta\rangle)$ and that of the units ε_2 , ε_3 . The index $(H_+:\langle\eta\rangle)$ is determined similarly as in [2] or [3] by using Theorems 1 and 2 below. The computation of ε_2 and ε_3 is explained in § 4.

§ 2. Upper bound of h/h_2h_3 . The following lemma gives an upper bound of the index of a subgroup of H_+ .

Lemma 1. Let $1 \le \epsilon \in H_+$ and $D(\epsilon)$ be the discriminant of ϵ . Then