83. A Remark on the Boundary Behavior of Quasiconformal Mappings and the Classification of Riemann Surfaces

By Hiroshige SHIGA Kyoto Sangyo University

(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1981)

1. Generally, a property of open Riemann surfaces is not always preserved by a quasiconformal mapping. For example, the class O_{AB} , the class of Riemann surfaces on which there exists no non-constant bounded analytic function, is not quasicomformally invariant (cf. [1], [3]). In this paper, we shall study properties of Riemann surfaces which are not preserved by quasiconformal mappings.

Let R_1, R_2 be open Riemann surfaces and $f: R_1 \rightarrow R_2$ be a quasiconformal mapping. The main purpose of this paper is to construct the counter examples for the following problems.

I. Suppose that R_j (j=1,2) are hyperbolic, that is, R_j have Green's functions $g_j(\cdot, p_j)$ with poles at $p_j \in R_j$. Are the Green's functions quasi-invariant? Precisely, dose the following inequality

 $g_1(z, p_1) \leq M g_2(f(z), f(p_1))$

hold for any point z on R_1 and a constant M(>0) not depending on z? II. Suppose R_1 is in *Widom class* (cf. [5]), that is, R_1 is hyperbolic

and for each point $p_1 \in R_1$,

 $\int_0^\infty \beta(t:p_i)dt < +\infty,$

where $\beta(t:p_1)$ is the first Betti number of $\{p \in R_1: g_1(p, p_1) > t\}$. Is R_2 also in *Widom class*?

III. Let R_1 and R_2 be not in O_{AB} . Suppose that R_1 is AB-separable, that is, for any points $p, q \in R_1$ $(p \neq q)$ there is a bounded analytic function g such that $g(p) \neq g(q)$. Is R_2 also AB-separable?

Finally in §4, we shall give a theorem concerning with Problems II and III.

2. First of all, we recall the following proposition due to A. Beurling and L. Ahlfors (cf. [1], [2]).

Proposition. There exists a quasiconformal automorphism of the upper half plane with the boundary function h(x) $(x \in \mathbf{R})$ if and only if

(1)
$$\rho^{-1} \leq \frac{h(x+t) - h(x)}{h(x) - h(x-t)} \leq \rho$$

for some constant $\rho \geq 1$ and for all x and $t(\neq 0)$.