7. Scattering Techniques in Transmutation and some Connection Formulas for Special Functions

By Robert Carroll*) and John E. Gilbert**)
(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1981)

1. Introduction. Fadeev in [11] develops a technique for displaying certain operators of interest in scattering theory in terms of transmutations ; this allows one to give an essentially unified derivation of the Gelfand-Levitan and Marčenko equations (which is generalized in Carroll [6]). In particular the link between the Gelfand-Levitan and Marčenko equations is shown in [11] to be a certain transmutation operator \tilde{U} and in this article we determine the natural generalization $\widetilde{\mathscr{B}}$ (or $\widetilde{\mathscr{B}}$) of \tilde{U} in the transmutation framework of Carroll [2]-[5]; then, in a context based on harmonic analysis in rank one noncompact symmetric spaces, we show how the use of such operators $\widetilde{\mathscr{B}}$ provides a transmutation meaning and abstract derivation for various types of formulas connecting special functions with integrals of RiemannLiouville and Weyl type (cf. Flensted-Jensen [12], Koornwinder [13], Askey-Fitch [1], Chao [8]). One particular feature of \tilde{U} which relates Riemann-Liouville and Weyl type integrals in the relation $\tilde{U}=\left(U^{-1}\right)^{*}$ for a basic transmutation operator U and this provides complementary types of triangular kernels (cf. here Erdélyi [10] for a related use of adjointness). In our more general framework adjointness plays a different role but we obtain similar triangularity results for the analogous \mathscr{B} and $\tilde{\mathcal{B}}$ by other methods (Theorem 2.1). The details will appear in [7].
2. Basic constructions. We will work with differential operators of the form $P(D) u=\left(A u^{\prime}\right)^{\prime} / A$ where $A(x)$ will have properties modeled on $P(D)$ being the radial Laplace-Beltrami operator on a noncompact Riemannian symmetric space of rank one (cf. [9], [12], [13] for details). Let $\varphi_{\lambda}^{P}(t)$ be a "spherical function" satisfying $P(D) \varphi_{\lambda}^{P}$ $=\left(-\lambda^{2}-\rho^{2}\right) \varphi_{\lambda}^{P}, \varphi_{\lambda}^{P}(0)=1$, and $D_{t} \varphi_{\lambda}^{P}(0)=0$, where $\rho=\lim (1 / 2) A^{\prime} / A$ at $t \rightarrow \infty$. Thus $\varphi_{\lambda}(t)=\varphi_{\lambda}^{P}(t) \sim H(t, \mu)$ for $\mu=-\lambda^{2}$ and $\hat{P}=P+\rho^{2}$ (notation of [2]-[5]). We set $\Omega(x, \mu)=\Omega_{\lambda}(x)=\Omega_{\lambda}^{P}(x)=\Delta_{P}(x) \varphi_{\lambda}^{P}(x)$ where $\Delta_{P}(x)$ $=A(x)$ for $P(D)$. Then $\hat{P}^{*}(D) \Omega_{\lambda}^{P}=\mu \Omega_{\lambda}^{P}$ where $P^{*}(D) \psi=\left[A(\psi / A)^{\prime}\right]^{\prime}$ denotes the formal adjoint of $P(D)$. A typical example of $\Delta_{P}(x)$ here is $\Delta_{P}(x)=\Delta_{\alpha \beta}(x)=\left(e^{x}-e^{-x}\right)^{2 \alpha+1}\left(e^{x}+e^{-x}\right)^{2 \beta+1}$ with $\rho=\alpha+\beta+1$ in which
[^0]
[^0]: *) University of Illinois at Champaign-Urbana.
 **) University of Texas at Austin.

