79. A Remark on the Hadamard Variational Formula. II

By Daisuke FUJIWARA

Department of Mathematics, Tokyo Institute of Technology

(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1981)

§1. Introduction. Let f(x) be a real-valued C^{∞} -function of x in \mathbb{R}^n . Let $\Omega_t = \{x \in \mathbb{R}^n | f(x) < t\}$ for any real t. Then its boundary is $\gamma_t = \{x \in \mathbb{R}^n | f(x) = t\}$. We assume the following assumptions for f:

(A.1) Ω_2 is a bounded domain diffeomorphic to the unit disc.

(A.2) All values $t \in [-2, 0) \cup (0, 2]$ are regular values of f.

(A.3) Ω_2 contains only one critical point x^0 of f, where $f(x^0)=0$ and f has the non-degenerate Hessian of the index n-1.

For any $t \in [-1, 0) \cup (0, 1]$, we consider the following boundary value problem for u:

(1.1) $(\lambda - \Delta)u(x) = w(x), \quad \text{for } x \in \Omega_{\iota},$

(1.2)
$$\frac{\partial}{\partial \nu} u(x) = 0, \quad \text{for } x \in \gamma_t,$$

where ν is the outer unit normal to γ_t and $\lambda \in \mathbb{C}$. If $\lambda > 0$, u is uniquely determined by w and we put $u(x) = N_t(\lambda)w(x)$. Let $N_t(\lambda, x, y)$ be the integral kernel function of the mapping: $w \mapsto N_t(\lambda)w$, i.e.,

(1.3)
$$N_{\iota}(\lambda)w(x) = \int_{\mathfrak{g}_{\iota}} N_{\iota}(\lambda, x, y)w(y)dy.$$

It is well known from the Hadamard variational formula that the function $N_t(\lambda, x, y)$ is continuously differentiable with respect to t if $t \neq 0$ and $x, y \in \Omega_{-1}$. The Hadamard variational formula implies that

$$(1.4) \qquad \frac{d}{dt} N_{t}(\lambda, x, y) \\ = \int_{\tau_{t}} N_{t}(\lambda, z, y) N_{t}(\lambda, z, x) \frac{1}{|\operatorname{grad} f(z)|} d\sigma(z) \\ + \int_{\tau_{t}} \langle \mathcal{F}'_{z} N_{t}(\lambda, z, y), \, \mathcal{F}'_{z} N_{t}(\lambda, z, x) \rangle \frac{1}{|\operatorname{grad} f(z)|} d\sigma(z)$$

where $d\sigma$ is the volume element of $\gamma_i, \Gamma'_z N_i(\lambda, z, y)$ denotes the component tangent to γ_i of the gradient vector of $N_i(\lambda, z, y)$ with respect to z and \langle , \rangle denotes the inner product in the tangent vector space to γ_i . See, for instance, Hadamard [6], Aomoto [1], Peetre [8] and Fujiwara-Ozawa [3].

For any small $\varepsilon > 0$, we have

(1.5)
$$N_{1}(\lambda, x, y) - N_{\epsilon}(\lambda, x, y) = \int_{\epsilon}^{1} \frac{d}{d\tau} N_{\tau}(\lambda, x, y) d\tau$$