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1. Introduction. Let f(x) be a real-valued C-unction o x in
R. Let tg={x e Rlf(x)t} or any real t. Then its boundary is
={x e R[f(x)=t}. We assume the ollowing assumptions or f"

(A.1) 9. is a bounded domain diffeomorphic to the unit disc.
(A.2) All values t e [-2, 0)[J (0, 2] are regular values o f.
(A.3) tg contains only one critical point x o f, where f(x)=0

and f has the non-degenerate Hessian o the index n--1.
For any t e [--1, 0)U(0, 1], we consider the ollowing boundary

value problem or u"

(1.1) (-l)u(x)=w(z), for x e

u(x)=0, for x e(1.2)

where , is the outer unit normal to ’t and e C. If 0, u is uniquely
determined by w and we put u(x)=N(,)w(x). Let N(2, x, y) be the
integral kernel function o the mapping" wN(,)w, i.e.,

(1.3) Nt(2)w(x)-- [ Nt(2, x, y)w(y)dy.
d9t

It is well known rom the Hadamard variational ormul that the
unction N(, x, y) is continuously differentiable with respect to t if
t=/=0 and x, y e 9_x. The Hadamard variational ormul implies that

(1.4) dY(2, x, y)
dt

I N(, z, y) N(,, z, x) 1 da(z)
Igrad f(z)l

/ (/’zN(2, z, y), /7N(2, z, x)}
grad f(z)

da(z)

where dz is the volume element o:f ., ’tzNt(] z, y) denotes the component
tngent to , o the gradient vector o N(2, z, y) with respect to z nd
(, } denotes the inner product in the tangent vector space to -. See,
or instance, Hadamard [6], Aomoto [1], Peetre [8] nd Fujiwara-
Ozawa [3].

For any small e0, we hve

(1.5) N1(2, x, y)--No(2, x, y)=fl dN(2 x, y)dr


