69. On the Solvability of Goursat Problems and a Function of Number Theory

By Masafumi Yoshino
Department of Mathematics, Tokyo Metropolitan University
(Communicated by Kôsaku Yosida, M. J. A., June 11, 1981)

1. Introduction. In this paper we shall study the reduced Goursat problem with constant coefficients:

$$
\begin{equation*}
L u=\left(\alpha \partial_{1}^{-1} \partial_{2}+\varepsilon+b \partial_{1} \partial_{2}^{-1}+c \partial_{1}^{2} \partial_{2}^{-2}\right) u=h(x) \tag{1.1}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}\right) \in C^{2}, \partial_{i}=\partial / \partial x_{i}(i=1,2)$ and ∂_{i}^{-1} is the integration with respect to the variable x_{i} from the origin to x_{i}.

If the roots $\lambda_{1}, \lambda_{2}, \lambda_{3}$ of the characteristic equation of L;

$$
\begin{equation*}
a \lambda^{3}+\varepsilon \lambda^{2}+b \lambda+c=0 \tag{1.2}
\end{equation*}
$$

satisfy the "Alinhac-Leray condition" $\left|\lambda_{1}\right| \leqq\left|\lambda_{2}\right|<\left|\lambda_{3}\right|$ the solvability and the uniqueness of (1.1) are proved by S . Alinhac in [1] under some additional conditions. Whereas, if the condition is not satisfied few results are known. The best work known is that of Leray's for (1.1) with $c=0$ in [2]. He introduced the number-theoretical function $\rho(\theta)$ (cf. [2]) and expressed a sufficient condition for the solvability and uniqueness of (1.1) for $c=0$ in terms of $\rho(\theta)$.

The purpose of this paper is to study the case $c \neq 0$ without assuming the Alinhac-Leray condition. We introduce a function $\rho\left(\theta_{1}, \theta_{2}\right)$ as a natural extension of the Leray's auxiliary function $\rho(\theta)$ which describes the transcendency of θ_{1} and θ_{2}. In terms of this function we shall characterize the range of the operator L. As a result we reveal a close connection between the algebraic-transcendental properties of the characteristic roots and the solvability and uniqueness. We remark that the results here can be extended to a wider class of equations with multiple characteristic roots.
2. Statement of theorems. Without loss of generality we may assume that $a c \neq 0$. Moreover, by the linear change of variables such as $r x_{1}=z_{1}, x_{2}=z_{2}(r \neq 0)$ we may assume that eq. (1.2) has the root 1 and that the absolute values of other roots do not exceed 1. Since we are interested in the case where the Alinhac-Leray condition is not satisfied we assume $0<\left|\lambda_{1}\right| \leqq\left|\lambda_{2}\right|=1$. Let H_{0} be the set of functions analytic at the origin. Then

Theorem 2.1. If the roots $\lambda_{1}, \lambda_{2}, 1$ of eq. (1.2) are not distinct the $\operatorname{map} L: H_{0} \rightarrow H_{0}$ is bijective.

In view of this theorem we shall consider the case where the roots $\lambda_{1}, \lambda_{2}, 1$ are distinct. Let I_{k} be defined by

