57. Singular Hadamard's Variation of Domains and Eigenvalues of the Laplacian. II

By Shin OZAWA

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., May 12, 1981)

§1. This paper is a continuation of our previous note [2]. Let Ω be a bounded domain in \mathbb{R}^n with \mathcal{C}^s boundary γ and w be a fixed point in Ω . For any sufficiently small $\varepsilon > 0$, let B_{ϵ} be the ball defined by $B_{\epsilon} = \{z \in \Omega ; |z-w| < \varepsilon\}$. Let Ω_{ϵ} be the bounded domain defined by $\Omega_{\epsilon} = \Omega \setminus \overline{B}_{\epsilon}$. Then the boundary of Ω_{ϵ} consists of γ and ∂B_{ϵ} . Let $0 > \mu_1(\varepsilon) > \mu_2(\varepsilon) > \cdots$ be the eigenvalues of the Laplacian with the Dirichlet condition on $\partial \Omega_{\epsilon}$. We arrange them repeatedly according to their multiplicities. In [2], [3] we gave the asymptotic formulas for the *j*-th eigenvalue $\mu_j(\varepsilon)$ when $\varepsilon \searrow 0$ in case n=2, 3. In this note we treat the case n=4. We have the following

Theorem 1. Assume n=4. Fix j. Suppose that the j-th eigenvalue μ_j of the Laplacian with the Dirichlet condition on γ is a simple eigenvalue, then

(1.1) $\mu_j(\varepsilon) - \mu_j = -2S_4\varepsilon^2\varphi_j(w)^2 + O(\varepsilon^{5/2})$ holds when ε tends to zero. Here φ_j denotes the eigenfunction of the Laplacian with the Dirichlet condition on γ satisfying

$$\int_{\varrho} \varphi_j(x)^2 dx = 1.$$

Here S_4 denotes the area of the unit sphere in \mathbb{R}^4 .

Our aim of this note is to offer a rough sketch of the proof of the above theorem. Calculation and technique which are used to prove Theorem 1 are more elaborate than in case n=2 and 3. $L^p(1 spaces are used in this note. We employed only <math>L^2$ spaces in case n=2, 3.

We review a generalization of the Schiffer-Spencer formula. See [6]. Also see [3]. In the following we assume n=4. Let G(x, y) be the Green's function on Ω . Put

$$\omega_{\varepsilon} = \{x \in \Omega; G(x, w) < (2S_{4}\varepsilon^{2})^{-1}\}$$

and $\beta_{\epsilon} = \Omega \setminus \overline{\omega}_{\epsilon}$. Let $G_{\epsilon}(x, y)$ be the Green's function in ω_{ϵ} .

Variational formula for the Green's function [3]. Fix x, $y \in \Omega \setminus \{w\}$ such that $x \neq y$. Then

(1.2)
$$G_{\varepsilon}(x, y) = G(x, y) - 2S_{\varepsilon}^{2}G(x, w)G(y, w) + O(\varepsilon^{3})$$

holds when ε tends to zero. The remainder term is not uniform with respect to x, y.

To prove Theorem 1 we use the iterated kernel $G_{\epsilon}^{(2)}$ (resp. $G^{(2)}$) of