57. Singular Hadamard's Variation of Domains and Eigenvalues of the Laplacian. II

By Shin Ozawa
Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., May 12, 1981)
§ 1. This paper is a continuation of our previous note [2]. Let Ω be a bounded domain in R^{n} with \mathcal{C}^{3} boundary γ and w be a fixed point in Ω. For any sufficiently small $\varepsilon>0$, let B_{s} be the ball defined by B_{ε} $=\{z \in \Omega ;|z-w|<\varepsilon\}$. Let Ω_{ε} be the bounded domain defined by Ω_{ε} $=\Omega \backslash \bar{B}_{\mathrm{c}}$. Then the boundary of Ω_{c} consists of γ and ∂B_{c}. Let $0>\mu_{1}(\varepsilon)$ $>\mu_{2}(\varepsilon)>\cdots$ be the eigenvalues of the Laplacian with the Dirichlet condition on $\partial \Omega_{c}$. We arrange them repeatedly according to their multiplicities. In [2], [3] we gave the asymptotic formulas for the j-th eigenvalue $\mu_{j}(\varepsilon)$ when $\varepsilon \searrow 0$ in case $n=2,3$. In this note we treat the case $n=4$. We have the following

Theorem 1. Assume $n=4$. Fix j. Suppose that the j-th eigenvalue μ_{j} of the Laplacian with the Dirichlet condition on γ is a simple eigenvalue, then

$$
\begin{equation*}
\mu_{j}(\varepsilon)-\mu_{j}=-2 \mathcal{S}_{4} \varepsilon^{2} \varphi_{j}(w)^{2}+O\left(\varepsilon^{5 / 2}\right) \tag{1.1}
\end{equation*}
$$

holds when ε tends to zero. Here φ_{j} denotes the eigenfunction of the Laplacian with the Dirichlet condition on γ satisfying

$$
\int_{\Omega} \varphi_{j}(x)^{2} d x=1
$$

Here \mathcal{S}_{4} denotes the area of the unit sphere in R^{4}.
Our aim of this note is to offer a rough sketch of the proof of the above theorem. Calculation and technique which are used to prove Theorem 1 are more elaborate than in case $n=2$ and 3. $\quad L^{p}(1<p<\infty)$ spaces are used in this note. We employed only L^{2} spaces in case $n=2,3$.

We review a generalization of the Schiffer-Spencer formula. See [6]. Also see [3]. In the following we assume $n=4$. Let $G(x, y)$ be the Green's function on Ω. Put

$$
\omega_{\varepsilon}=\left\{x \in \Omega ; G(x, w)<\left(2 \mathcal{S}_{4} \varepsilon^{2}\right)^{-1}\right\}
$$

and $\beta_{s}=\Omega \backslash \bar{\omega}_{c}$. Let $G_{s}(x, y)$ be the Green's function in ω_{c}.
Variational formula for the Green's function [3]. Fix x, y $\in \Omega \backslash\{w\}$ such that $x \neq y$. Then

$$
\begin{equation*}
G_{\epsilon}(x, y)=G(x, y)-2 \mathcal{S}_{4} \varepsilon^{2} G(x, w) G(y, w)+O\left(\varepsilon^{3}\right) \tag{1.2}
\end{equation*}
$$

holds when ε tends to zero. The remainder term is not uniform with respect to x, y.

To prove Theorem 1 we use the iterated kernel $G_{\varepsilon}^{(2)}$ (resp. $G^{(2)}$) of

