55. A Remark on the Completeness of the Bergman Metric

By Takeo OHSAWA^{*)}

Research Institute for Mathematical Sciences, Kyoto University

(Communicated by Kunihiko KODAIRA, M. J. A., April 13, 1981)

§ 1. Introduction. The purpose of this note is to prove the following theorem by modifying the argument in a recent work of P. Pflug (cf. [4]).

Theorem 1. Let D be a bounded pseudoconvex domain in \mathbb{C}^n with a \mathbb{C}^1 -smooth boundary. Then D is complete with respect to

$$d_{\scriptscriptstyle D}$$
 := $\sum_{\alpha,\beta} \frac{\partial^2 \log K(z\,;\,D)}{\partial z^{lpha} \partial \bar{z}^{eta}} dz^{lpha} d\bar{z}^{eta}.$

Here we put $z = (z^1, \dots, z^n)$ and denote by K(z; D) the Bergman kernel function of D.

The metric d_p was first introduced by S. Bergman [1], and S. Kobayashi [2] asked "Which bounded domain (of holomorphy) in C^n is complete with respect to d_p ?"

The author is grateful to Prof. P. Pflug who informed him of his very interesting result.

§2. Preliminaries. We put

$$K(z, w; D) := \sum_{i=1}^{\infty} f_i(z) \overline{f_i(w)},$$

where $\{f_i\}_{i=1}^{\infty}$ is an orthonormal basis of $L_h^2(D) := \{f; holomorphic, square integrable on <math>D\}$.

Lemma 1 (cf. Lemma 3 in [4, IV]). Assume the sequence $\{z_{\nu}\}_{\nu=1}^{\infty}$ $\subset D$ to be a Cauchy-sequence with respect to d_D . Then there exist a subsequence $\{z_{\nu(u)}\}_{u=1}^{\infty}$ and real numbers θ_u such that the sequence

$$\left\{\frac{K(\ , z_{\nu(u)}; D)}{K(z_{\nu(u)}, z_{\nu(u)}; D)^{1/2}}e^{i\theta_{u}}\right\}_{u=1}^{\infty}$$

is a Cauchy-sequence in $L_h^2(D)$ whose members are all of modulus one. From Lemma 1 we can deduce the following

Lemma 2. Assume that d_D is not complete. Then there is a sequence $\{z_n\}_{n=1}^{\infty} \subset D$ converging to a point $z^* \in \partial D$, such that

$$\lim_{\min_{\{
u,\mu\} o\infty}}\Big(1\!-\!rac{|K(z_{
u},z_{\mu}\,;D)|}{K(z_{
u},z_{
u}\,;D)^{1/2}K(z_{\mu},z_{\mu}\,;D)^{1/2}}\Big)\!=\!0.$$

Proof. We only have to note that

$$\left(\frac{K(\ , z_{\nu}; D)}{K(z_{\nu}, z_{\nu}; D)^{1/2}}, \frac{K(\ , z_{\mu}; D)}{K(z_{\mu}, z_{\mu}; D)^{1/2}}\right) = \frac{K(z_{\mu}, z_{\nu}; D)}{K(z_{\nu}, z_{\nu}; D)^{1/2}K(z_{\mu}, z_{\mu}; D)^{1/2}}.$$

^{*)} The author was supported by Alexander von Humboldt-Foundation.