52. On Voronoï's Theory of Cubic Fields. I

By Masao Arai

Gakushuin Girls' High School

(Communicated by Shokichi IYANAGA, M. J. A., April 13, 1981)

In his thesis [1], G. Voronoï developed an elaborate theory on the arithmetic of cubic fields, the results of which are explained in detail in Delone and Faddeev's book [2]. In this note, we shall make an additional remark to this theory, by means of which we shall give an algorithm to obtain an integral basis of such a field. In a subsequent note, we shall discuss the type of decomposition in prime factors of rational primes.

Let $K = Q(\theta)$ be a cubic field, θ being a root of an irreducible cubic equation with coefficients from Z. The ring of integers in K will be denoted by O_{κ} . Orders of K, i.e. subrings of O_{κ} containing 1 and constituting 3-dimensional free Z-modules, are denoted generally by O. A basis of O of the form $[1, \xi, \eta]$ is called *unitary* and two bases $[1, \xi, \eta]$, $[1, \xi', \eta']$ are called *parallel* if $\xi - \xi', \eta - \eta' \in \mathbb{Z}$. Parallelism is an equivalence relation between unitary bases of O. A unitary basis $[1, \alpha, \beta]$ was called *normal* by Voronoï, if $\alpha\beta \in \mathbb{Z}$. To avoid confusion (especially in case K/Q is a Galois extension) we shall call a unitary, normal basis in the above sense a Voronoï basis, abridged V-basis. It is easily shown that there is a unique V-basis parallel to a given unitary basis of O. [1, α , β] being a V-basis, let $X^3 + a_1X^2 + a_2X + a_3$, $X^3 + b_1X^2 + b_2X + b_3$ be the minimal polynomials of α , β respectively. Then it is shown that $a_2/b_1 = a_3/\alpha\beta = a$ and $b_2/a_1 = b_3/\alpha\beta = d$ are integers. Put $a_1 = b$, $b_1 = c$. The quadruple $(a, b, c, d) \in \mathbb{Z}^{4}$ thus determined is called V-quadruple associated to $[1, \alpha, \beta]$. We write $\varphi[1, \alpha, \beta] = (a, b, c, d)$.

Conversely, when a V-quadruple (a, b, c, d) is given, let α be a root of $X^3 + bX^2 + acX + a^2d = 0$, and put $\beta = ad/\alpha$. Then we have $\varphi[1, \alpha, \beta]$ = (a, b, c, d). α is determined only up to conjugacy, but the discriminant of the order $[1, \alpha, \beta]$ is determined by (a, b, c, d). We shall denote it by D(a, b, c, d).

Now, if $[1, \alpha, \beta]$, $[1, \alpha', \beta']$ are two V-bases of O, we have $(1, \alpha', \beta') = (1, \alpha, \beta)A$, where A is a (3, 3)-matrix with entries $a_{ij} \in \mathbb{Z}$ (i, j=1, 2, 3), $a_{11}=1, a_{21}=a_{31}=0$ and $\begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} \in GL(2, \mathbb{Z})$. Conversely, if $[1, \alpha, \beta]$ is a V-basis and A is a matrix of this form, then, choosing $a_{12}, a_{13} (\in \mathbb{Z})$ suitably (there is unique choice of such a_{12}, a_{13}), and putting $(1, \alpha', \beta') = (1, \alpha, \beta)A$, $[1, \alpha', \beta']$ becomes another V-basis of O. For simplifica-