52. On Voronoì's Theory of Cubic Fields. I

By Masao Arai
Gakushuin Girls' High School
(Communicated by Shokichi Ifanaga, m. J. A., April 13, 1981)

In his thesis [1], G. Voronoï developed an elaborate theory on the arithmetic of cubic fields, the results of which are explained in detail in Delone and Faddeev's book [2]. In this note, we shall make an additional remark to this theory, by means of which we shall give an algorithm to obtain an integral basis of such a field. In a subsequent note, we shall discuss the type of decomposition in prime factors of rational primes.

Let $K=\boldsymbol{Q}(\theta)$ be a cubic field, θ being a root of an irreducible cubic equation with coefficients from Z. The ring of integers in K will be denoted by O_{K}. Orders of K, i.e. subrings of O_{K} containing 1 and constituting 3 -dimensional free Z-modules, are denoted generally by O. A basis of O of the form [1, ξ, η] is called unitary and two bases $[1, \xi, \eta]$, [$\left.1, \xi^{\prime}, \eta^{\prime}\right]$ are called parallel if $\xi-\xi^{\prime}, \eta-\eta^{\prime} \in Z$. Parallelism is an equivalence relation between unitary bases of O. A unitary basis $[1, \alpha, \beta]$ was called normal by Voronoï, if $\alpha \beta \in Z$. To avoid confusion (especially in case K / Q is a Galois extension) we shall call a unitary, normal basis in the above sense a Voronoï basis, abridged V-basis. It is easily shown that there is a unique V-basis parallel to a given unitary basis of O. $[1, \alpha, \beta]$ being a V-basis, let $X^{3}+a_{1} X^{2}+a_{2} X+a_{3}, X^{3}+b_{1} X^{2}+b_{2} X+b_{3}$ be the minimal polynomials of α, β respectively. Then it is shown that $a_{2} / b_{1}=a_{3} / \alpha \beta=a$ and $b_{2} / a_{1}=b_{3} / \alpha \beta=d$ are integers. Put $a_{1}=b, b_{1}=c$. The quadruple $(a, b, c, d) \in Z^{4}$ thus determined is called V-quadruple associated to $[1, \alpha, \beta]$. We write $\varphi[1, \alpha, \beta]=(a, b, c, d)$.

Conversely, when a V-quadruple (α, b, c, d) is given, let α be a root of $X^{3}+b X^{2}+a c X+a^{2} d=0$, and put $\beta=a d / \alpha$. Then we have $\varphi[1, \alpha, \beta]$ $=(a, b, c, d) . \quad \alpha$ is determined only up to conjugacy, but the discriminant of the order $[1, \alpha, \beta]$ is determined by (a, b, c, d). We shall denote it by $D(a, b, c, d)$.

Now, if $[1, \alpha, \beta],\left[1, \alpha^{\prime}, \beta^{\prime}\right]$ are two V-bases of O, we have ($1, \alpha^{\prime}, \beta^{\prime}$) $=(1, \alpha, \beta) A$, where A is a (3, 3)-matrix with entries $a_{i j} \in Z(i, j=1,2,3)$, $a_{11}=1, a_{21}=a_{31}=0$ and $\left(\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right) \in G L(2, Z)$. Conversely, if $[1, \alpha, \beta]$ is a V-basis and A is a matrix of this form, then, choosing $a_{12}, a_{13}(\in Z)$ suitably (there is unique choice of such a_{12}, a_{13}), and putting ($1, \alpha^{\prime}, \beta^{\prime}$) $=(1, \alpha, \beta) A,\left[1, \alpha^{\prime}, \beta^{\prime}\right]$ becomes another V-basis of O. For simplifica-

