49. On the Mean Value Property of Harmonic and Complex Polynomials

By Shigeru Haruki
Okayama University of Science
(Communicated by Kôsaku Yosida, m. J. A., April 13, 1981)

1. Introduction. Throughout this note K denotes either the field of complex numbers C or the field of real numbers R. Let n be a fixed integer >2, and θ denote the number $\exp (2 \pi i / n)$.

In 1935 S. Kakutani and M. Nagumo [1], and independently, in 1936 J. L. Walsh [3] proved the following theorems concerning the mean value property (MVP) of harmonic and complex polynomials.

Theorem A (Kakutani-Nagumo-Walsh). If $f: C \rightarrow R$ is continuous, the MVP

$$
\sum_{\nu=0}^{n-1} f\left(x+\theta^{\nu} y\right)=n f(x)
$$

holds for all $x, y \in C$ if, and only if, $f(x)$ is a harmonic polynomial of degree at most $n-1$.

Theorem B. An entire function f satisfies the MVP for all $x, y \in C$ if and only if f is given by a complex polynomial of degree at most $n-1$.

The above theorems are direct or indirect motivations for the generalizations and applications of various papers.

The main purpose of this note is to inform some more generalizations of Theorems A and B from the standpoint of the theory of finite difference functional equations.
2. The general solution. Definition. A mapping $Q^{p}: C \rightarrow K$ is called a homogeneous polynomial of degree p if and only if there exists a p-additive symmetrical mapping $Q_{p}: C^{p} \rightarrow K$; that is, $Q_{p}\left(x_{1}, \cdots, x_{p}\right)$ $=Q_{p}\left(x_{i_{1}}, \cdots, x_{i_{p}}\right)$ for all $x_{1}, \cdots, x_{p} \in C$ and for all permutations $\left(i_{1}\right.$, \cdots, i_{p}) of the sequence $(1, \cdots, p)$ and Q_{p} is an additive function in each $x_{q}, 1 \leq q \leq p$, such that $Q^{p}(x)=Q_{p}(x, \cdots, x)$ for all $x \in C$. We say that Q_{p} is associated with Q^{p} or that Q_{p} generates Q^{p}.

We agree that for $p=0$ a homogeneous polynomial of degree zero is a constant.

Definition. Let β be any non-negative integer. If $f: C \rightarrow K$ is a finite sum $f=Q^{0}+Q^{1}+\cdots+Q^{\beta}$ of homogeneous polynomials, then f is called a generalized polynomial of degree at most β.

Notation. Let $Q_{(n-r, r)}(x ; y)$ denote the value of $Q_{n}\left(x_{1}, \cdots, x_{n}\right)$ for $x_{i}=x, \quad i=1, \cdots, n-r$ and $x_{i}=y, \quad i=n-r+1, \cdots, n$. In particular

