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0. In this note, we will show the new method or constructing
exact solutions of the vacuum Einstein equation or stationary axi-
symmetric gravitational fields (VESA).

From a viewpoint of the inverse scattering theory, Belinsky-Zak-
harov (B-Z) [1], [2] gave an interesting method or integrating VESA,
expressed by the metric orm
(0.1) --ds2=f(dp2+dz2)+gdxdx (a, fl=0, 1)
where f and g are unctions in p and z, and x, x represent the co-
ordinates t, , respectively.

Under the supplementary condition
(0.2) det g= p2, g-- (g),
the fields eluation or the metric (0.1) can be written as ollows

=O
(0.3)

U-V,+-’V+p-[U, v]=o
(log f), p-1 + (4p) -1 trace (U-V)

(0.4)
((log f)z= (2p) -1 trace (UV).

Here U=pg,g-, and V=pgg-. We should note that the matrix g is
symmetric. B-Z found that the equation (0.3) are equivalent to the
compatibility conditions of the system of linear ecluations

pV--2U y,
2 +p(O.5)

D2Y 2V+pU y,
2 +p

where
22 D---- 22p

and 2 is a complex parameter independent of p and z.
If we find a solution Y()= Y(, p, z) to (0.4), and set

(0.6) g= Y(0)= Y(0, p, z),
the potentials U and V in (0.5) can be recovered as U--pg,g-, V
=pgg-, so we obtain a solution of (0.3). But we should note that the
function g given by (0.6) is not always assured to be symmetric, real,
and to satisfy the condition (0.2). We can easily find the conditions
that g is real and satisfies (0.2) (cf. [1], [2], [9]). Therefore one of the


