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We study a system of microdifferential (-pseudodifferential)
equations. We assume that the characteristic variety V of is the
union of two regular submanifolds with non-involutory intersection.
We also assume that /has regular singularities along V. (Precise
assumptions will be given below.) In 1, we give a canonical form of
/in the complex domain. Applying this result, we study in 2 the
branching of supports of microfunction solutions of under the ad-
ditional assumption that /is hyperbolic. Details of this article will
appear elsewhere.

1. A canonical form of a system with regular singularities
along its non.involutory characteristics. Let X be an n-dimensional
complex manifold and T*X be its cotangent bundle. We identify the
zero section of T*X with X. Let z=(z, ..., z,) be a local coordinate
system of X. Then (z, (, dz})= (z, )= (z, ..., z, , ..., ) denotes a
point of T*X. We denote by the sheaf on T*X of microdifferential
operators (of finite order). Note that ’ is denoted by in [6]. Let
(]) be the sheaf on T*X of holomorphic functions homogeneous of
degree ] with respect to the fiber coordinates. We denote by L’(]) the
sheaf of microdifferential operators of order at most ]. There is a
natural homomorphism

as" (j)-->O(]) (j)/(]- 1).
I:f. P e (])-(]--1), we call a(P)--as(P) the principal symbol o P. For
a homogeneous (=conic) involutory analytic subset V o:[ T’X--X, we
set I,(])-- {f 0(]) fl---O}. Then O,(O)--(C)(O)/I,(O) is a coherent sheaf
o rings on V. We set flv--{P e ’(1) al(P) Iv(l)) and denote by v
the subring o ’ generated by qv.

Let o--[dz-+-... 2:-ndz be the undamental l-form on T*X. A
homogeneous involutory submaniold o T*X--X is said to be regular
if the pull back o w to it vanishes nowhere.

For a submaniold W of T*X and a point p o W, we say that p
is a point of rank 2r in W if the rank o the skew-symmetric bilinear
form d on T;W is of rank 2r. If each point of W is a point of rank
2r in W, we say that W is of rank 2r and write rank W--2r.


