47. A Canonical Form of a System of Microdifferential Equations with Non-Involutory Characteristics and Branching of Singularities

By Toshinori ÔAKU

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., April 13, 1981)

We study a system \mathcal{M} of microdifferential (= pseudodifferential) equations. We assume that the characteristic variety V of \mathcal{M} is the union of two regular submanifolds with non-involutory intersection. We also assume that \mathcal{M} has regular singularities along V. (Precise assumptions will be given below.) In § 1, we give a canonical form of \mathcal{M} in the complex domain. Applying this result, we study in § 2 the branching of supports of microfunction solutions of \mathcal{M} under the additional assumption that \mathcal{M} is hyperbolic. Details of this article will appear elsewhere.

§1. A canonical form of a system with regular singularities along its non-involutory characteristics. Let X be an n-dimensional complex manifold and T^*X be its cotangent bundle. We identify the zero section of T^*X with X. Let $z = (z_1, \dots, z_n)$ be a local coordinate system of X. Then $(z, \langle \zeta, dz \rangle) = (z, \zeta) = (z_1, \dots, z_n, \zeta_1, \dots, \zeta_n)$ denotes a point of T^*X . We denote by \mathcal{C}_X the sheaf on T^*X of microdifferential operators (of finite order). Note that \mathcal{C}_X is denoted by \mathcal{P}_X' in [6]. Let $\mathcal{O}(j)$ be the sheaf on T^*X of holomorphic functions homogeneous of degree j with respect to the fiber coordinates. We denote by $\mathcal{C}(j)$ the sheaf of microdifferential operators of order at most j. There is a natural homomorphism

$\sigma_j: \mathcal{E}(j) \to \mathcal{O}(j) \cong \mathcal{E}(j) / \mathcal{E}(j-1).$

If $P \in \mathcal{C}(j) - \mathcal{C}(j-1)$, we call $\sigma(P) = \sigma_j(P)$ the principal symbol of P. For a homogeneous (=conic) involutory analytic subset V of $T^*X - X$, we set $I_V(j) = \{f \in \mathcal{O}(j); f|_V = 0\}$. Then $\mathcal{O}_V(0) = \mathcal{O}(0)/I_V(0)$ is a coherent sheaf of rings on V. We set $\mathcal{J}_V = \{P \in \mathcal{C}(1); \sigma_1(P) \in I_V(1)\}$ and denote by \mathcal{C}_V the subring of \mathcal{C}_X generated by \mathcal{J}_V .

Let $\omega = \zeta_1 dz_1 + \cdots + \zeta_n dz_n$ be the fundamental 1-form on T^*X . A homogeneous involutory submanifold of $T^*X - X$ is said to be regular if the pull back of ω to it vanishes nowhere.

For a submanifold W of T^*X and a point p of W, we say that p is a point of rank 2r in W if the rank of the skew-symmetric bilinear form $d\omega$ on T_pW is of rank 2r. If each point of W is a point of rank 2r in W, we say that W is of rank 2r and write rank W=2r.