43. Zeta Functions in Several Variables Associated III*[,] with Prehomogeneous Vector Spaces.

Eisenstein Series for Indefinite Quadratic Forms

By Fumihiro SATO

Department of Mathematics, Rikkyo University

(Communicated by Shokichi IYANAGA, M. J. A., March 12, 1981)

In the present note, by applying the general theory developed in [2], we prove functional equations of Eisenstein series for indefinite quadratic forms.

6. Let Y be an n+1 by n+1 rational non-degenerate symmetric matrix of signature (p, q) (p+q=n+1). Denote by $d_i(A)$ the determinant of the upper left i by i block of a matrix A. Let Γ_{∞} be the group of upper triangular integral matrices of size n+1 with diagonal entries 1. For an n+1 tuple $\varepsilon = (\varepsilon_1, \dots, \varepsilon_{n+1})$ of ± 1 , we write sgn ε =(i, n-i+1) if exactly i of ε_j 's are equal to 1. For any $\varepsilon \in \{\pm 1\}^{n+1}$ with sgn $\varepsilon = (p, q)$, the Eisenstein series for Y is defined by

$$E(Y, \varepsilon; s) = \sum_{U} \prod_{i=1}^{n} |d_i(^{\iota}UYU)|^{-s_i} (s = (s_1, \cdots, s_n) \in C^n)$$

where U runs through a set of all representatives of the double cosets belonging to $SO(Y)_{\mathbb{Z}} \setminus SL(n+1)_{\mathbb{Z}} / \Gamma_{\infty}$ such that

 $|d_i(UYU)/|d_i(UYU)| = \varepsilon_1 \cdots \varepsilon_i \ (1 \leq i \leq n+1).$

Let $z=(z_1, \dots, z_{n+1})$ be a variable which is connected to s by $s_i=z_{i+1}$ $-z_i + 1/2$ (1 $\le i \le n$). Set

$$\Lambda(Y,\varepsilon;z) = \sum_{1 \le j < i \le n+1} \eta(2z_i - 2z_j + 1) |\det Y|^{z_{n+1}} E(Y,\varepsilon;s)$$

where $\eta(z) = \pi^{-z/2} \Gamma(z/2) \zeta(z)$ ($\zeta(z)$: the Riemann zeta function).

Theorem 6. (1) The series $E(Y, \varepsilon; s)(\varepsilon \in \{\pm 1\}^{n+1}, \operatorname{sgn} \varepsilon = (p, q))$ are absolutely convergent for $\operatorname{Re} s_1, \cdots, \operatorname{Re} s_n > 1$.

(2) The functions $E(Y, \varepsilon; s)$ multiplied by

$$\prod_{1 \le i \le j \le n} \left(s_i + s_{i+1} + \dots + s_j - \frac{j-i}{2} - 1 \right)^2 \zeta(2(s_i + s_{i+1} + \dots + s_j) - j + i)$$

have analytic continuations to entire functions of s in C^n .

(3) For any permutation σ in n+1 letters and for any ε , $\eta \in \{\pm 1\}^{n+1}$ such that $\operatorname{sgn} \varepsilon = \operatorname{sgn} \eta = (p, q)$, there exists $A^{\circ}(\varepsilon, \eta; z)$ a rational function of trigonometric functions of z satisfying $\Lambda(Y$

$$I(Y, \varepsilon; \sigma z) = \sum_{\eta} A^{\sigma}(\varepsilon, \eta; z) \Lambda(Y, \eta; z)$$

Supported by the Grant in Aid for Scientific Research of the Ministry of Education No. 574050.