38. On the Asymptotic Behavior of Asymptotically Nonexpansive Semi-Groups in Banach Spaces

By Masataka TANIGUTI,*) Yoshitaka TAKAHASHI,**) and Hiroshi ABE***)

(Communicated by Kôsaku Yosida, m. j. a., March 12, 1981)

1. Introduction and statement of results. Throughout this paper X denotes a *uniformly convex* real Banach space and C is a nonempty *closed* subset of X. Let J be an unbounded subset of $[0, \infty)$ such that

 $(1.1) t+s \in J for every t, s \in J,$

and

(1.2) $t-s \in J$ for every $t, s \in J$ with t>s.

A family $\{T(t): t \in J\}$ of mappings from C into itself is called an asymptotically nonexpansive semi-group on C if

(1.3) T(t+s)=T(t)T(s) for $t, s \in J$ and there exists a function $a: J \rightarrow [0, \infty)$ with $\lim_{t \rightarrow \infty} a(t)=1$ such that (1.4) $||T(t)x-T(t)y|| \le a(t)||x-y||$ for every $x, y \in C$ and $t \in J$.

In particular if $a(t) \equiv 1$, then $\{T(t) : t \in J\}$ is called a *nonexpansive semi*group on C. The set of fixed points of $\{T(t) : t \in J\}$ will be denoted by F, i.e. $F = \{x \in C : T(t)x = x \text{ for all } t \in J\}$. We denote by $C_{11}[0, \infty)$ $(C_1[0, \infty))$ the set of increasing (nondecreasing) continuous functions defined on $[0, \infty)$.

In this paper we deal with the strong convergence of trajectories of semi-groups. Our first result is the following which extends and unifies several results in [1], [2], [4].

Theorem 1. Let $\{T(t): t \in J\}$ be an asymptotically nonexpansive semi-group on C with $F \neq \phi$, and let $x \in C$. Suppose that

(a₁) there exist $x_0 \in F$, $\varphi \in C_{11}[0, \infty)$, $\psi \in C[0, \infty)$ and a nonnegative function b defined on J with $\lim_{h\to\infty} b(h)=1$ such that

$$\varphi(\|T(h)u+T(h)v-2x_0\|) \le \varphi(b(h)\|u+v-2x_0\|) + [\psi(b(h)\|u-x_0\|)$$

$$-\psi(\|T(h)u-x_0\|)+\psi(b(h)\|v-x_0\|)-\psi(\|T(h)v-x_0\|)]$$

for every $u, v \in \{T(t)x : t \in J\}$ and $h \in J$ and

(a₂) $\lim_{t\to\infty} ||T(t+h)x-T(t)x|| = 0 \quad for \ every \ h \in J.$

Then $\{T(t)x : t \in J\}$ converges strongly as $t \to \infty$ to an element of F. Remark. Suppose that $T : C \to C$ is nonexpansive (i.e. ||Tu - Tv||

^{*)} Department of Mathematics, Waseda University, Tokyo.

^{**)} Musashino Electrical Communication Laboratory, N.T.T.

^{***&#}x27; Yonaizawa High School, Akita.