37. A Further Generalization of the Ostrowski Theorem in Banach Spaces

By Mau-Hsiang SHIH

Department of Mathematics, Chung-Yuan University, Chung-Li, Taiwan

(Communicated by Kôsaku Yosida, M. J. A., March 12, 1981)

§ 1. Let $f: D \subset \mathbb{R}^n \to \mathbb{R}^n$ be Fréchet differentiable at an interior point x^* of D and $f(x^*) = x^*$. If the spectral radius of $f'(x^*)$ satisfies $\rho(f'(x^*)) < 1$, then x^* is a point of attraction (or an attractor) of the iterates $f(x_k) = x_{k+1}$, i.e., there is an open neighborhood S of x^* such that $S \subseteq D$ and, for any $x_0 \in S$, the iterates $\{x_k\}$ defined by $f(x_k) = x_{k+1}$ all lie in D and converge to x^* . The sufficiency of $\rho(f'(x^*)) < 1$ for a point of attraction was proved by Ostrowski [4, pp. 118-120] (first edition) under somewhat more stringent condition on f, and later by Ostrowski [4, pp. 161–164] (second edition) and [5, pp. 150–152] under those of the above theorem. Using the well known spectral radius formula in Banach algebra, Kitchen [3] extended Ostrowski's theorem to an arbitrary Banach space. Ostrowski's theorem occupies a special place in the study of Newton's iteration processes [4]. To study nonstationary (nonautonomous) processes and Newton-SOR processes, Ortega and Rheinboldt [4, pp. 349-350] extended Ostrowski's theorem in a more general form. Generalizing further, we shall extend this general form to an arbitrary Banach space.

§ 2. Let X and Y be two real Banach spaces. A family of maps $\{f_h\}$, where $f_h: D \subset X \to X$ and the parameter vector h varies over some set $D_h \subset Y$, is uniformly Fréchet differentiable at an interior point of D if each f_h is Fréchet differentiable at an interior point of D if each f_h is Fréchet differentiable at x and if for any $\varepsilon > 0$ there exists a $\delta = \delta(\varepsilon) > 0$, independent of h, such that $S(x, \delta) = \{y \in X : ||y-x|| < \delta\} \subset D$ and

$$\|f_h(y)-f_h(x)-f'_h(x)(y-x)\|\leq \varepsilon \|y-x\|$$

for all $y \in S(x, \delta)$ and for all $h \in D_h$.

Theorem (Generalized Ostrowski theorem in Banach spaces). Let X and Y be two real Banach spaces. For $f: D \times D_h \subset X \times Y \to X$ and x^* is an interior point of D such that $x^* = f(x^*, h)$ for all $h \in D_h$, assume that the family of maps $\{f_h\}$, where

 $f_h: D \subset X \rightarrow X, f_h(x) = f(x, h), x \in D, h \in D_h,$ is uniformly Fréchet differentiable at x^* for all $h \in D_h$, and that $f'_h(x^*) = H^{q(h)}, \quad \text{for all } h \in D_h,$

where H is a bounded linear operator on X satisfies $\rho(H) < 1$ and q(h)