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Recently, one of the authors revealed a closed connection between
branching of singularities and Stokes phenomena for a certain class
of degenerate hyperbolic operators ([2]). We generalize his result to
the following type of degenerate hyperbolic linear partial differential
operators P in R, X R":

P=>P, (t x,D, D),
i=0
Pm(t’ X, T, S)'—— ﬁ (T_tqi(t, €T, ‘S))’
i=1

Pm—i(t’ X, T, &)z:LZ;:: ta(i’j)Pij(t, X, S)Tm_i-jy

a 0 0
g D= e D= )
teN, (@, H=max(fl{—1,0), A4, x, &) e C*(R,XR:XR?\0, R\0) are
homogeneous of degree 1 with respect to &, and P, (¢, x, &) € C*(R, X R;
X R?) are homogeneous polynomials of degree j; with respect to ¢&.
Moreover, (¢, z, &) satisfy |2,(¢, , &)—2,(t, z, &)|>C|¢| (te R, x € R",
&€ R*\0) for some C>0 if i+7.

As for P, Uryu [8] established the &£ wellposedness of the Cauchy
problem and Nakamura-Uryu [4] and Shinkai [6] illustrated the con-
struction of a backward and a forward parametrices of the Cauchy
problem with initial data at t=0 in terms of Fourier integral oper-
ators.

In this note we show that the equation Pu=0 possesses a solution
whose singularities branch at ¢=0. The outline of the proof is as
follows. According to the construction of parametrix given by Naka-
mura-Uryu [4], the main parts of the amplitudes which consist the
parametrix are determined by a fundamental system of solutions of
the ordinary differential operator
L=3"5 t=®»P, (0, z, £)Dp-i-.

=0 7=0

where D,=

Its asymptotic expansions for large || considered in ¢>0 and t>0 are
different (namely, Stokes phenomena occurs at t=0). The one is dif-
ferent from the other by multiplying Stokes multipliers. Observing



