32. An Approximate Positive Part of Essentially Self-Adjoint Pseudo-Differential Operators. II

By Daisuke Fujiwara
Department of Mathematics, University of Tokyo
(Communicated by Kôsaku Yosida, m. J. A., March 12, 1981)

§ 1. Introduction. Let $\alpha(x, \xi)$ be a real valued symbol function belonging to the class $S_{10}^{1}\left(\mathrm{R}^{n}\right)$ of Hörmander [2], that is, for any pair of multi-indices α and β, we have

$$
\sup \left(1+|\xi|^{2}\right)^{(|\beta|-1) / 2}\left|D_{x}^{\alpha} D_{\xi}^{\beta} a(x, \xi)\right|<\infty,
$$

where we used usual multi-index notation. As the continuation of the previous note [1], we treat the Weyl quantization $a^{w}(x, D)$ of it, which is defined as

$$
\begin{equation*}
a^{w}(x, D) u(x)=\left(\frac{1}{2 \pi}\right)^{n} \int_{\mathrm{R}^{n}} \int_{\mathrm{R}^{n}} a\left(\frac{x+y}{2}, \xi\right) e^{i(x-y) \cdot \xi} u(y) d y d \xi . \tag{1.1}
\end{equation*}
$$

Cf. Weyl [6], Voros [5], and Hörmander [3].
Let (,) and || || denote the inner product and the norm, respectively, in $L^{2}\left(\mathrm{R}^{n}\right)$. In the previous note, we reported the following

Theorem 1. Let ε be an arbitrary small positive number. Then, using the symbol function $a(x, \xi)$, we can construct three bounded linear operators π^{+}, π^{-}and R in $L^{2}\left(\mathbf{R}^{n}\right)$ with the following properties:

1) Both π^{+}and π^{-}are non-negative symmetric operators.
2) There exists a positive constant C such that we have

$$
\begin{array}{r}
\operatorname{Re}\left(\pi^{+} \alpha^{w}(x, D) u, u\right) \geq-C\|u\|^{2} \\
-\operatorname{Re}\left(\pi^{-} \alpha^{w}(x, D) u, u\right) \geq-C\|u\|^{2} \tag{1.3}
\end{array}
$$

for any $u \in \mathcal{S}\left(\mathrm{R}^{n}\right)$.
3)

$$
\begin{aligned}
& \pi^{+}+\pi^{-}=I+R, \quad\|R\|<\varepsilon, \quad \text { and } \\
& \left\|a^{w}(x, D) R\right\|<\infty, \quad\left\|R a^{w}(x, D)\right\|<\infty .
\end{aligned}
$$

Let

$$
\mathfrak{S}^{+}(\alpha)=\{(x, \xi) \mid \alpha(x, \xi) \geq 0\}
$$

and

$$
\mathfrak{C}^{-}(a)=\{(x, \xi) \mid a(x, \xi) \leq 0\} .
$$

We call $\mathfrak{C}^{\circ}(\alpha)=\mathfrak{C}^{+}(\alpha) \cap \mathfrak{C}^{-}(\alpha)$ the characteristic set of a. The aim of this note is to show the following

Theorem 2. Let $a(x, \xi)$ and $p(x, \xi)$ be two real valued functions in $S_{10}^{1}\left(\mathrm{R}^{n}\right)$. Suppose the following two conditions hold:
(A) $\mathfrak{C}^{+}(a) \subset \mathfrak{C}^{+}(p), \quad \mathfrak{c}^{-}(a) \subset \mathfrak{C}^{-}(p)$.
(B) There exists a positive constant C such that

$$
\begin{align*}
& \left|\operatorname{grad}_{x} p(x, \xi)\right| \leq C\left|\operatorname{grad}_{x} a(x, \xi)\right| \tag{1.4}\\
& \left|\operatorname{grad}_{\xi} p(x, \xi)\right| \leq C\left|\operatorname{grad}_{\xi} a(x, \xi)\right| \tag{1.5}
\end{align*}
$$

