26. On Certain Numerical Invariants of Mappings over Finite Fields. V

By Takashi Ono
Department of Mathematics, Johns Hopkins University
(Communicated by Shokichi Iyanaga, m. J. A., Jan. 12, 1981)

Introduction. This is a continuation of our paper [2] which will be referred to as (I) in this paper. ${ }^{1)}$ Let k be a finite field with q elements: $k=F_{q}, \chi$ be a non-trivial character of the multiplicative group k^{\times}(extended by $\left.\chi(0)=0\right)$ and f be a function $k \rightarrow k$. We shall put

$$
S_{f}(\chi)=\sum_{x \in k} \chi(f(x)) .
$$

Consider the polynomial

$$
\begin{equation*}
f(x)=x^{m}+A x+B, \quad A, B \in k, \quad m \geqq 3 \tag{0.1}
\end{equation*}
$$

Denote by $\Delta(A, B)$ the discriminant of $f(x)$, i.e.
(0.2) $\quad \quad \quad(A, B)=(-1)^{m-1}(m-1)^{m-1} A^{m}+m^{m} B^{m-1}$.

We assume that $(q, m)=(q, m-1)=1$. The purpose of the paper is to prove the following

Theorem. Let d be an integer $\geqq 2$ such that $(q, d)=(d, m)=(d$, $m-2)=1$ and let χ be a non-trivial character of k^{\times}of exponent d. Then, there is a polynomial $f(x)=x^{m}+A x+B$ with $A \neq 0, B \neq 0$, $\Delta(A, B) \neq 0$ such that

$$
\begin{equation*}
\left|S_{f}(\chi)\right|<\kappa \sqrt{q}, \tag{0.3}
\end{equation*}
$$

where $\kappa=\sqrt{3}$ if $m=3$ and $\kappa=\sqrt{2(m-1)}$ if $m \geqq 4$.
Remark 1. By the well-known theorem ${ }^{2)}$ we know that

$$
\begin{equation*}
\left|S_{f}(\chi)\right| \leqq(m-1) \sqrt{q} \tag{0.4}
\end{equation*}
$$

for any polynomial f of degree m with $(d, m)=1$.
Remark 2. When $d=2, m$ can be any odd integer $\geqq 3$ and since there is only one quadratic character χ we have the relation

$$
N=q+S_{f}(\chi),
$$

where N denotes the number of solutions $(x, y) \in k^{2}$ of the equation

$$
\begin{equation*}
y^{2}=x^{m}+A x+B \tag{0.5}
\end{equation*}
$$

Therefore, our Theorem means that among hyperelliptic curves of type (0.5) with $A \neq 0, B \neq 0, \Delta(A, B) \neq 0$, there is a curve which satisfies the inequality

$$
\begin{equation*}
|N-q|<\kappa \sqrt{q} \tag{0.6}
\end{equation*}
$$

where $\kappa=\sqrt{3}$ if $m=3$ and $\kappa=\sqrt{2(m-1)}$ if $m \geqq 5$ (m : odd). A similar remark can be made for the case $d=3$.

1) For example, we mean by (I.2.3) the item (2.3) in (I).
2) See Theorem 2C on p. 43 of [1].
