26. On Certain Numerical Invariants of Mappings over Finite Fields. V

By Takashi Ono

Department of Mathematics, Johns Hopkins University

(Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1981)

Introduction. This is a continuation of our paper [2] which will be referred to as (I) in this paper.¹⁾ Let k be a finite field with q elements: $k=F_q$, χ be a non-trivial character of the multiplicative group k^{\times} (extended by $\chi(0)=0$) and f be a function $k \rightarrow k$. We shall put $S_f(\chi) = \sum_{n \in I} \chi(f(x)).$

Consider the polynomial

(0.1) $f(x)=x^m+Ax+B$, $A, B \in k, m \ge 3$. Denote by $\Delta(A, B)$ the discriminant of f(x), i.e. (0.2) $\Delta(A, B)=(-1)^{m-1}(m-1)^{m-1}A^m+m^mB^{m-1}$. We assume that (q, m)=(q, m-1)=1. The purpose of the paper is to prove the following

Theorem. Let d be an integer ≥ 2 such that (q, d) = (d, m) = (d, m-2) = 1 and let χ be a non-trivial character of k^{\times} of exponent d. Then, there is a polynomial $f(x) = x^m + Ax + B$ with $A \neq 0$, $B \neq 0$, $\Delta(A, B) \neq 0$ such that

$$|S_t(\chi)| < \kappa \sqrt{q},$$

(0.4)

where $\kappa = \sqrt{3}$ if m = 3 and $\kappa = \sqrt{2(m-1)}$ if $m \ge 4$.

Remark 1. By the well-known theorem²⁾ we know that

 $|S_{t}(\chi)| \leq (m-1)\sqrt{q}$

for any polynomial f of degree m with (d, m) = 1.

Remark 2. When d=2, m can be any odd integer ≥ 3 and since there is only one quadratic character χ we have the relation

$$N=q+S_f(\chi),$$

where N denotes the number of solutions $(x, y) \in k^2$ of the equation (0.5) $y^2 = x^m + Ax + B.$

Therefore, our Theorem means that among hyperelliptic curves of type (0.5) with $A \neq 0$, $B \neq 0$, $\Delta(A, B) \neq 0$, there is a curve which satisfies the inequality

(0.6) $|N-q| < \kappa \sqrt{q}$ where $\kappa = \sqrt{3}$ if m=3 and $\kappa = \sqrt{2(m-1)}$ if $m \ge 5$ (m: odd). A similar remark can be made for the case d=3.

1) For example, we mean by (I.2.3) the item (2.3) in (I).

²⁾ See Theorem 2C on p. 43 of [1].