25. Class Number Calculation and Elliptic Unit. II Quartic Case

By Ken NAKAMULA

Department of Mathematics, Tokyo Metropolitan University (Communicated by Shokichi IYANAGA, M. J. A., Feb. 12, 1981)

Let K be a real quartic number field which is not totally real and contains a (real) quadratic subfield K_2 . Let D(<0), h and E_+ respectively be the discriminant, the class number and the group of positive units of K. In the following, an effective algorithm will be given to calculate h and E_+ at a time.

Our method is the same as in our preceding note [3] except for a slight change. We shall show a method to compute the relative class number with respect to K/K_2 , assuming that the class number of K_2 is known.

§ 1. Illustration of algorithm. Let d_2 , h' and η_2 (>1) respectively be the discriminant, the class number and the fundamental unit of K_2 . We can compute h' and η_2 in a usual manner if d_2 is given. So we assume that h' and η_2 are explicitly given. The group E_+ of positive units of K is a free abelian group of rank 2. Let H_+ be the group of positive units of K/K_2 , and $\varepsilon_1(>1)$ be the generator of H_+ , i.e.

$$H_+:=\{\varepsilon\in E_+|N_{K/K_2}(\varepsilon)=1\}=\langle\varepsilon_1\rangle.$$

Then, as in [2], the relative unit ε_1 generates E_+ together with another unit $\varepsilon_2(>1)$, i.e. $E_+ = \langle \varepsilon_1, \varepsilon_2 \rangle$, where

(1) $\varepsilon_2 = \sqrt{\varepsilon_1 \eta_2}, \quad \sqrt{\eta_2} \quad \text{or} \quad \eta_2.$

Let η_e be the so-called "elliptic unit" of K, of which the definition will be given in § 5. Then, applying the results of Schertz [4], we see that $\eta_e > 1$ and $\eta_e \in H_+$, and obtain the following relation between η_e and the class number h of K:

(2)
$$h/h' = (E_+ : \langle \varepsilon_1, \eta_2 \rangle)(H_+ : \langle \eta_e \rangle)/2.$$

Therefore, the calculation of the relative class number h/h' is reduced to the determination of the group index $(H_+: \langle \eta_e \rangle)$ and the unit ε_2 . Our method consists of the following steps:

(i) to compute an approximate value of η_e (§ 5),

(ii) to compute the minimal polynomial of η_e over Q (Lemma 2),

(iii) for $\xi \in H_+$ ($\xi > 1$), to give an explicit upper bound $B(\xi)$ of $(H_+: \langle \xi \rangle)$ (Proposition 1),

(iv) for $\xi \in H_+$ ($\xi \neq 1$), and for a natural number μ , to judge whether a real number $\sqrt[n]{\xi}$ belongs to K or not, and to compute the