25. Class Number Calculation and Elliptic Unit. II Quartic Case

By Ken Nakamula
Department of Mathematics, Tokyo Metropolitan University
(Communicated by Shokichi Iyanaga, m. J. A., Feb. 12, 1981)

Let K be a real quartic number field which is not totally real and contains a (real) quadratic subfield K_{2}. Let $D(<0), h$ and E_{+}respectively be the discriminant, the class number and the group of positive units of K. In the following, an effective algorithm will be given to calculate h and E_{+}at a time.

Our method is the same as in our preceding note [3] except for a slight change. We shall show a method to compute the relative class number with respect to K / K_{2}, assuming that the class number of K_{2} is known.
§ 1. Illustration of algorithm. Let d_{2}, h^{\prime} and $\eta_{2}(>1)$ respectively be the discriminant, the class number and the fundamental unit of K_{2}. We can compute h^{\prime} and η_{2} in a usual manner if d_{2} is given. So we assume that h^{\prime} and η_{2} are explicitly given. The group E_{+}of positive units of K is a free abelian group of rank 2. Let H_{+}be the group of positive units of K / K_{2}, and $\varepsilon_{1}(>1)$ be the generator of H_{+}, i.e.

$$
H_{+}:=\left\{\varepsilon \in E_{+} \mid N_{K / K_{2}}(\varepsilon)=1\right\}=\left\langle\varepsilon_{1}\right\rangle .
$$

Then, as in [2], the relative unit ε_{1} generates E_{+}together with another unit $\varepsilon_{2}(>1)$, i.e. $E_{+}=\left\langle\varepsilon_{1}, \varepsilon_{2}\right\rangle$, where

$$
\begin{equation*}
\varepsilon_{2}=\sqrt{\varepsilon_{1} \eta_{2}}, \quad \sqrt{\eta_{2}} \text { or } \eta_{2} . \tag{1}
\end{equation*}
$$

Let η_{e} be the so-called "elliptic unit" of K, of which the definition will be given in § 5. Then, applying the results of Schertz [4], we see that $\eta_{e}>1$ and $\eta_{e} \in H_{+}$, and obtain the following relation between η_{e} and the class number h of K :
(2)

$$
h / h^{\prime}=\left(E_{+}:\left\langle\varepsilon_{1}, \eta_{2}\right\rangle\right)\left(H_{+}:\left\langle\eta_{e}\right\rangle\right) / 2 .
$$

Therefore, the calculation of the relative class number h / h^{\prime} is reduced to the determination of the group index $\left(H_{+}:\left\langle\eta_{e}\right\rangle\right)$ and the unit ε_{2}. Our method consists of the following steps:
(i) to compute an approximate value of η_{e} (§5),
(ii) to compute the minimal polynomial of η_{e} over \boldsymbol{Q} (Lemma 2),
(iii) for $\xi \in H_{+}(\xi>1)$, to give an explicit upper bound $B(\xi)$ of ($H_{+}:\langle\xi\rangle$) (Proposition 1),
(iv) for $\xi \in H_{+}(\xi \neq 1)$, and for a natural number μ, to judge whether a real number $\sqrt[\mu]{\xi}$ belongs to K or not, and to compute the

