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1. Introduction. Edrei and Fuchs [1] established the following
interesting theorem :

Theorem A. Let f(2) be a meromorphic function of order 2,0
<A<1. Put

#=1—-0600, f) and v=1—0d(c0, f), 0=Zu,v<1,
where §(a, f) denotes the Nevanlinna deficiency of a value a. Then
we have
w2+ —2uv cos tA=8in*(z ).
Further, if u<coswl, then v=1; if v<cos i, then u=1.

This beautiful and elegant theorem solves completely the problem
of finding relations between any two deficiencies of a meromorphic
function of order less than one. A little later, Edrei [2] showed that
the order 1 in the theorem may be replaced by the lower order .

Shea [4] obtained a result which concerns with the Valiron defi-
ciency 4(a, f) instead of d(a, f). That is, he proved

Theorem B. Let f(2) be a meromorphic function of order 2,0
<2<1, whose zeros lie on the negative real axis, and whose poles lie
on the positive real axis. Put

X=1—-400, /) and Y=1—4d(co, f).
Then, when 1/2<21<1, we have
X2+ Y?—2XY cos nA<sin’(z2a).
When 0<2<1/2, the above inequality still holds provided
X=cos(md) and Y=cos(nd).

The purpose of this paper is to extend these theorems to n-valued
algebroid functions of order less than one. Our results are as follows:

Theorem 1. Let f(2) be an n-valued algebroid function of order
1, 0<2<1, defined by the irreducible equation
11 AR f+A @S+ +4,()=0,
where Ay(z), A(2), ---, A () are entire functions without common
zeros, and we suppose that 0 is not a Valiron deficient value for Az).

Let a,, j=1, - - -, n, be mutually distinct values, and put
1.2) u;=1—6(a;, f) and v=1—d(co, ), 0=u, v<1.

Then, there is at least one a,, 1<v<n, such that
(1.3) w2 —2u,v cos tA=>n"2 8in*(xl).



