No. 10]

110. Modular Representations of p-Groups with Regular Rings of Invariants

By Haruhisa NAKAJIMA Department of Mathematics, Keio University

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1980)

§1. Introduction. Let V be an *n*-dimensional vector space over a field k of characteristic p and G a finite subgroup of GL(V). Then G acts linearly on the symmetric algebra R of V. We denote by R^{d} the subring of R consisting of all invariant polynomials under this action of G. The following theorem is well known.

(1.1) Theorem (Chevalley-Serre, cf. [2], [3], [5]). Suppose that p=0 or (|G|, p)=1. Then \mathbb{R}^{σ} is a polynomial ring if and only if G is generated by pseudo-reflections in GL(V) (an element σ of GL(V) is said to be a pseudo-reflection if rank $(\sigma-1)\leq 1$).

Now we assume that p>0 and that the order of G is divisible by p. Serve obtained a necessary condition for R^{a} to be a polynomial ring as follows.

(1.2) Theorem (Serre, cf. [2], [5]). If R^a is a polynomial ring, then G is generated by pseudo-reflections.

However the converse of (1.2) is not always true. For example $R^{o_n(F_q)}$ $(n \ge 4, p \text{ odd})$ are not polynomial rings, where $O_n(F_q)$ are orthogonal subgroups of GL(V) of dimension n defined over the subfield F_q of k consisting of q elements.

Hereafter we suppose that k is the prime field of characteristic p(>0) and that G is a p-subgroup of GL(V).

The purpose of this note is to announce our results on rings of invariants of p-groups. We can completely determine p-groups G such that R^{a} are polynomial rings. The main result is

(1.3) Theorem. The following statements on a pair of V and G are equivalent:

(1) R^{a} is a polynomial ring.

(2) There is a k-basis $\{X_1, \dots, X_n\}$ of V with the equality

$$\prod_{i=1}^{n} |GX_i| = |G|$$

such that all $\bigoplus_{i=1}^{j} kX_i$ $(1 \leq j \leq n)$ are kG-submodules of V.

In [1] it has been shown that if G is a p-Sylow subgroup of GL(V), R^{g} is a polynomial ring.

§2. Preliminaries. We need some lemmas on invariant subrings of polynomial rings: