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Introduction. This is again a continuation of my two preceding
papers® [3]. We shall be concerned with algebras with involution and
Hopf maps.

§1. Algebras with involution. Let K=F, (¢: odd) and let A be
an associative algebra with involution «. (See [1] for basic facts on
such algebras). Take an invertible element § € A such that

1.1) =0, e==+1
and consider the mapping F': A—A given by

1.2) F(x)=ux"6z, rxeA.

Clearly, F' is a quadratic mapping of the underlying vector space of A
into itself. In this section, we shall determine invariants pz, o» for
this mapping when the algebra (4, «) is simple. Since all finite division
rings are commutative, there are 4 types of such algebras, up to the
change of ground fields:

(i) A=K,@K,, (z,9)=("y,‘m), t(x,y)=tr @)+tr (),

(ii) A=K,, xz*=S"''%2S, ‘S=8§, r(@)=tr (),

(i) A=K,, o=J"'l, J=<_01 (1)) (@) =tr (),

(ivy A=L,, L=F,, =SS, 'S=8, r(x)=tr@)+tr ().
(Here = means the reduced trace of the algebra A over K, tr (x) means
the trace of the matrix « and the bar means the conjugation of the
quadratic extension L/K.) Note that the trace has the properties:

1.3) c(@)=1(), c(xy)=r(yx), the mapping (x,y)—(z,y) is a

non-degenerate symmetric bilinear form on A.
Therefore, to each 1€ A*, the dual space of A, there corresponds
uniquely an element a=a, € A such that 1(x)=z(ax). Conversely, any
a € A defines a linear form i1=1, by A(x)=r(ax). We have

(1.4) F(x)=i(F(x))=t(ax6x).

Put

15 < y>x=%(Fx(x+y)—Fz<x)—Fl(y».

Then, we have

*  As in my former paper (II), (I.2.3) will mean (2.8) in (I).



