# 102. On the Regularity of Arithmetic Multiplicative Functions. I 

By J.-L. Mauclaire*) and Leo Murata**)<br>(Communicated by Shokichi Iyanaga, m. J. A., Nov. 12, 1980)

1. Statement of result. An arithmetical function $f(n)$ is called additive (resp. multiplicative), if $f(m n)=f(m)+f(n)$ (resp. $f(m n)$ $=f(m) f(n)$ ) for any pair $m, n$ of relatively prime natural numbers, and is called completely additive (resp. completely multiplicative), if the above equality holds for every pair $m, n$.

We have several sufficient conditions under which an additive arithmetical function turns out to be completely additive. P. Erdös ([1]) proved that an additive arithmetical function which satisfies the condition

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\{f(n+1)-f(n)\}=0, \tag{1.1}
\end{equation*}
$$

is completely additive (and, more than that, it is equal to $c(\log n)$ for some $c$. .
I. Kátai ([2]) succeeded in replacing (1.1) by a weaker condition,

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leqslant x}|f(n+1)-f(n)|=0 \tag{1.2}
\end{equation*}
$$

F. Skof ([3]) gave another condition: an additive arithmetical function which satisfies

$$
\begin{equation*}
\lim _{\substack{n \rightarrow \infty \\ n \oplus S}}\{f(n+1)-f(n)\}=0, \tag{1.3}
\end{equation*}
$$

where $S$ is a sequence of density zero, is also completely additive.
We shall prove here a theorem which will show clearly the link between F. Skof's and I. Kátai's results.

Theorem. Suppose $g(n)$ is a multiplicative arithmetical function such that:

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{\substack{n<x \\ n \notin S}}|g(n+1)-g(n)|=0, \quad \text { and } \quad|g(n)|=1, \tag{1.4}
\end{equation*}
$$

where $S$ is a sequence of density zero. Then $g(n)$ is completely multiplicative.
2. Proof of the theorem. Lemma. Let $\left\{t_{n}\right\}_{n=1}^{\infty}$ be an increasing sequence of integers. Suppose $\limsup _{n \rightarrow \infty} t_{n} / n<\infty$, then, under the assumption of our theorem, we get

[^0]
[^0]:    *) C.N.R.S. (France) and Institute of Statistical Mathematics, Tokyo.
    **) Department of Mathematics, Tokyo Metropolitan University.

