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We investigate the extensions of the enveloping group C*-algebras
of discrete groups and show that to the free product of groups cor-
responds the direct sum of EXTs. As a consequence, it will be seen
that the EXT of the enveloping group C*-algebra of a free group F
is Z, a result announced in L. G. Brown [2].

Let G(k e N) be groups, then we denote by G.G (resp. 1-[* G)
the free product of G and G (resp. {G}e). If F is a group and
is homomorphism of G into F, then there exists a unique homomor-
phism of I-l* G into F such that o= for all i, where is the
canonical inclusion of G, into I-I* G. Throughout the paper, we as-
sume that the groups are countable, C*(G) is then separable and has a
unit, where C*(G) denotes the enveloping group C*-algebra of G.

H is a separable infinite dimensional Hilbert space, Q(H) is the
Calkin algebra on H, and z is the quotient map from the total operator
algebra B(H) onto Q(H). An extension r of K(H), the algebra of com-
pact operators, by ’a unital separable C*-algebra A is a unital *-isomor-
phism of A into Q(H). EXT(A) is the family of all equivalence classes
of extensions by A. Concerning these, we follow mainly the exposi-
tions in [1].

Let be a unital *-homomorphism of A into another unital sepa-
rable C*-algebra B. 0 induces a homomorphism * of EXT(B) into
EXT(A) in the following way. For [r] e EXT(B), [r] [r r0],
where r0 is the trivial extension of A, the extension which comes from
a unital *-isomorphism of A into B(H). This is. well-defined because
of the equivalence of all trivial extensions.

For short, we write EXT[G] in place of EXT(C*(G)).
Theorem. Let G be discrete groups (k e N). If EXT[G] are

groups for all k, then EXT[ [[* G] is a group. Moreover
EXT[ l-I* G] 1-Ie EXT[G].

Proof. If G is a discrete group, C*(G) is. generated by {U g e G},
where U is the corresponding unitary to g e G in its universal repre-
sentation. The canonical injection t of G into 1-[* G induces a *-
homomorphism , of C*(G) into C*(I-[* G). also induces a homo-


