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1. Introduction. Le M be an n-dimensional Riemannian
manifold, g its Riemannian metric and 3 the Laplace operator associ-
ated to g. If M is compact, it is well known that 3 is essentially self-
adjoint in L(M, dx), where dx is the volume element associated to g.
Also the spectrum a(z) of z consists of only isolated eigenvalues with
finite multiplicities. On the other hand, if M is not compact, z/ has
in general many selfadjoint extensions, and the spectrum may contain
continuous part or eigenvalues with infinite multiplicities. In the
first case, under a deformation of a Riemannian metric, the eigenvalues
move continuously in a certain sense. In this note we concern our-
selves with essential spectrum of z/ for a non-compact manifold. We
show the following

Theorem. Let (M, g) be a Riemannian manifold. Assume that
is essentially selfad]oint. Let gl be another Riemannian metric

which is different from g only on a compact subset K of M. Then,
(i) zl, is also essentially selfad]oint in L2(M, d,x),
(ii) the essential spectrum of is contained in the spectrum

a(d,) of
Here the essential selfadjointness of d means that the closure d

in L(M, dx)of d acting on C(M) is selfadjoint. In this case, it is
easy to show that it coincides with the extension of d in the sense of
distribution, that is, the domain D of ] consists of those e L(M, dx)
such that d e L(M, dx).

For selfadjoint operators the spectrum can be divided into two
parts, the one consisting o$ all isolated eigenvalues with finite multi-
plicities and the other, remaining set, called the essential spectrum.
The following proposition is known (see [3, p. 518]).

Proposition. Let be in the essential spectrum of a selfadjoint
operator A on a Hilbert space H. Then there exists an orthonormal
sequence {xn}_l in H such that

2. Proof of the theorem. For e L2(M, dx) we denote its norm
by IIll. Let U be an open subset of M such that the closure U is


