98. On a Result of T. Watanabe on Excessive Functions

By L. Stoica
Department of Mathematics, National Institute for Scientific and Technical Creation, Bucharest, Romania
(Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1980)

Let $\left(\Omega, \mathscr{M}_{,}, \mathscr{M}_{t}, X_{t}, \theta_{t}, P^{x}\right)$ be a standard process with state space E (locally compact, denumerable base) and suppose that its resolvent $\left\{V_{\lambda}: \lambda>0\right\}$ has the following property:

$$
V_{\lambda}\left(C_{b}(E)\right) \subset C_{b}(E) \quad \text { for each } \lambda>0,
$$ where $C_{b}(E)$ is the space of all bounded continuous functions on E.

The aim of this note is to prove the following result, which extends and unifies two results of T. Watanabe (Theorems 1 and 2 in [5]) :

Theorem. Let $f: E \rightarrow[0, \infty]$ be a lower semicontinuous function. Assume that for each $x \in E$ there exists a family of nearly Borel sets $U(x)$ such that
$1^{\circ} Q(x)$ is a base of neighbourhoods of x,
$2^{\circ} \quad E^{x}\left(f\left(X_{T_{C U}}\right)\right) \leqslant f(x)$ for each $U \in \mathcal{U}(x)$.
Then f is an excessive function.
The proof makes use of Bauer's minimum principle. We also need the following consequence of a result of G. Mokobodzki :

Lemma. If the potential kernel V_{0} maps the space of all continuous functions with compact support $C_{c}(E)$ into $C_{b}(E)$, then for each $g \in C_{c+}(E)$,
$\inf \{t: t$ is a lower semicontinuous excessive function and $t \geqslant V_{o} g$ on $C K$, for some compact set $\left.K\right\}=0$
Proof. From Theorem 12, p. 231 of [3], we deduce for each lower semicontinuous function g, the function $R g$ defined by

$$
R g=\inf \{t: t \text { is an excessive function and } t \geqslant g\}
$$

is a lower semicontinuous excessive function. (It should be noted that in [3] are considered only Borel excessive functions but the methods work for universally measurable functions.) Therefore if $g \in C_{c}^{+}(E)$ and K is a compact set, then $R\left(\chi_{C K} V_{o} g\right)$ is lower semicontinuous. From Hunt's theorem (see [2], page 141) we know that $R\left(\chi_{C K} V_{o} g\right)(x)$ $=E^{x}\left(V_{o} g\left(X_{T C K}\right)\right)=E^{x}\left(\int_{T_{c K}}^{\infty} g\left(X_{t}\right) d t\right)$ and hence $R\left(\chi_{C K} V_{o} g\right) \rightarrow 0$ when $K \nearrow E$, which implies the lemma.

Proof of the theorem. In order to simplify the exposition we first assume that the potential kernel V_{o} has also the property $V_{o}\left(C_{b}(E)\right)$ $\subset C_{b}(E)$. Next we are going to prove $\lambda V_{\lambda} f \leqslant f$, for $\lambda>0$. Since f

