94. On Determinants of Cartan Matrices of p.Blocks

By Mitsuo Fujii

Department of Mathematics, Osaka University

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 13, 1980)

1. Introduction. Let B be a p-block of a finite group with defect group D, and C_B the Cartan matrix of B. Then it is known that det $C_B \ge |D|$. In [6] we showed that the equality holds in the above under some assumption. The purpose of this note is to extend this result.

Notation. Let G be a finite group with order divisible by a fixed prime p and p a fixed prime divisor of p in the ring $Z[\varepsilon]$, where ε is a primitive |G|-th root of 1. We denote by F the residue class field $Z[\varepsilon]/p$, by FG the group algebra of G over F, and by Z(FG) the center of FG. If B is a block of G, we denote by C_B the Cartan matrix of B, by D(B) a defect group of B, and by I(B) the number of irreducible modular characters in B. If G is a G-subgroup of G, G-subgroup of G-regular (conjugate) classes of G associated with G which have G as a defect group. (For selection of sets of conjugate classes for the blocks, see Brauer G-subsections G-subsections G-subsection, see Brauer G-subsection of sets of subsection, see Brauer G-subsection, for a subsection, for a subsection, for G-subsection, for a subsection of G-subsection, for a subsection of G-subsection, for a subsection, for a subsection, for a subsection, for a subsection of G-subsection, for a subsection, for a subsection of G-subsection, for a subsection of G-subsection, for a subsection, for a subsection of G-subsection, for a subsection of G-subsection. If G-subsection is a conjugate class of G-subsection of G-subsection

The main result of this note is the following

Theorem. Let B be a block of G.

- (i) For a proper subgroup $Q \neq 1$ of D(B), if $m_B(Q) \neq 0$, then $m_b(Q) \neq 0$ for some $s = (\pi, b) \in S(B)$ such that D(b) contains Q as a proper subgroup.
 - (ii) If det $C_b = |D(b)|$ for any $s = (\pi, b) \in S(B)$, then det $C_B = |D(B)|$. Next corollary is an immediate consequence of Theorem, (ii).

Corollary 1. Let B be a block of G with defect group D. Suppose that l(b)=1 for any $s=(\pi,b)\in S(B)$. Then $\det C_B=|D|$.

As a special case we have the following

Corollary 2 (Fujii [6]). Let B be a block of G with defect group D. Suppose that the centralizer in G of any element of order p of D is p-nilpotent. Then $\det C_B = |D|$.

Remark. The first part of Theorem still holds even if we denote by $m_B(Q)$ the number of conjugate classes of G associated with B which