94. On Determinants of Cartan Matrices of p-Blocks

By Mitsuo Fujir
Department of Mathematics, Osaka University
(Communicated by Shokichi Iyanaga, m. J. a., Oct. 13, 1980)

1. Introduction. Let B be a p-block of a finite group with defect group D, and C_{B} the Cartan matrix of B. Then it is known that $\operatorname{det} C_{B} \geq|D|$. In [6] we showed that the equality holds in the above under some assumption. The purpose of this note is to extend this result.

Notation. Let G be a finite group with order divisible by a fixed prime p and \mathfrak{p} a fixed prime divisor of p in the ring $Z[\varepsilon]$, where ε is a primitive $|G|$-th root of 1 . We denote by F the residue class field $Z[\varepsilon] / \mathfrak{p}$, by $F G$ the group algebra of G over F, and by $Z(F G)$ the center of $F G$. If B is a block of G, we denote by C_{B} the Cartan matrix of B, by $D(B)$ a defect group of B, and by $l(B)$ the number of irreducible modular characters in B. If Q is a p-subgroup of $G, m_{B}(Q)$ denotes the number of p-regular (conjugate) classes of G associated with B which have Q as a defect group. (For selection of sets of conjugate classes for the blocks, see Brauer [1], [2], [4], Osima [8], and Iizuka [7].) We denote by $S(B)$ the set of subsections $s=(\pi, b)$ associated with B which are different from $1=(1, B)$. (For a subsection, see Brauer [3].) For brevity we write $C(X)$ and $N(X)$ instead of $C_{G}(X)$ and $N_{G}(X)$ for a subset X of G respectively. If K is a conjugate class of G, we denote by \hat{K} the class sum of K in the group algebra $F G$.

The main result of this note is the following
Theorem. Let B be a block of G.
(i) For a proper subgroup $Q \neq 1$ of $D(B)$, if $m_{B}(Q) \neq 0$, then $m_{b}(Q)$ $\neq 0$ for some $s=(\pi, b) \in S(B)$ such that $D(b)$ contains Q as a proper subgroup.
(ii) If $\operatorname{det} C_{b}=|D(b)|$ for any $s=(\pi, b) \in S(B)$, then $\operatorname{det} C_{B}=|D(B)|$.

Next corollary is an immediate consequence of Theorem, (ii).
Corollary 1. Let B be a block of G with defect group D. Suppose that $l(b)=1$ for any $s=(\pi, b) \in S(B)$. Then $\operatorname{det} C_{B}=|D|$.

As a special case we have the following
Corollary 2 (Fujii [6]). Let B be a block of G with defect group D. Suppose that the centralizer in G of any element of order p of D is p-nilpotent. Then $\operatorname{det} C_{B}=|D|$.

Remark. The first part of Theorem still holds even if we denote by $m_{B}(Q)$ the number of conjugate classes of G associated with B which

