10. A Reciprocity Law in Some Relative Quadratic Extensions

By Hideji Ito

Department of Mathematics, Akita University

(Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1980)

Introduction. Let E be an elliptic curve defined over Q, and ℓ a rational prime ($\neq 2$). Put $E_{\ell} = \{a \in E \mid \ell a = 0\}$ and $K_{\ell} = Q(E_{\ell})$, i.e. the number field generated over Q by all the coordinates of the points of order ℓ on E. K_{ℓ} contains a subfield K'_{ℓ} which is generated over Q by all the *x*-coordinates of the points of order ℓ on E. The degree of K_{ℓ}/K'_{ℓ} is 1 or 2, and usually the latter is the case, for example, when Gal $(K_{\ell}/Q) \cong \operatorname{GL}_2(Z/\ell Z)$ or when E has complex multiplication (see Remark in § 2).

The aim of this note is to investigate the law of decomposition of primes in these extensions K_{ℓ}/K'_{ℓ} .

Let p be a good prime for E. Put $\pi = \pi_p$ be the Frobenius endomorphism of $E \mod p$, and $a_p = \operatorname{tr}(\pi)$, where trace is taken with respect to the ℓ -adic representation of $E \mod p$. Then the main result of this note is the following: If $\left(\frac{p}{\ell}\right) = -1$, then the relative degree of \mathfrak{p} (=any extension of p to K'_{ℓ}) in K_{ℓ}/K'_{ℓ} coincides with the absolute degree of ℓ in $Q(\sqrt{a_p^2 - 4p})/Q$. One might say that this is some sort of reciprocity law, although in case $\left(\frac{p}{\ell}\right) = 1$ that cannot always hold.

§ 1. The following two fields are contained in K_i :

i) $Q(\zeta_{\ell})$, where ζ_{ℓ} is a primitive ℓ -th root of unity,

ii) $M_{\ell} = Q(j_1, j_2, \dots, j_{\ell+1})$, where j_i 's are the *j*-invariants of elliptic curves which are ℓ -isogenous to E, in other words, M_{ℓ} is the splitting field of the modular equation $J_{\ell}(X, j(E)) = 0$, where j(E) is the *j*-invariant of E.

Both of them are Galois extensions of Q. Put $G = \text{Gal}(K_{\ell}/Q)$. Then we can identify G with a subgroup of $\text{GL}_2(\mathbb{Z}/\ell\mathbb{Z})$. And the corresponding subgroups for $Q(\zeta_{\ell})$ and M_{ℓ} by the Galois theory are

 $S = G \cap \operatorname{SL}_2(Z/\ell Z), \qquad H = G \cap \{aI \mid a \in (Z/\ell Z)^*\},$

where $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, respectively.

Proposition 1. 1) $K'_{\ell} = M_{\ell}(\zeta_{\ell}), 2$ $M_{\ell} \cap Q(\zeta_{\ell}) \supset Q(\sqrt{\pm \ell}).$ Here we take $+\ell$ when $\ell \equiv 1 \pmod{4}$ and $-\ell$ when $\ell \equiv 3 \pmod{4}.$

Proof. 1) Note that K'_{ℓ} corresponds to $G \cap \{\pm I\}$ and $SL_2(\mathbb{Z}/\ell\mathbb{Z})$