2. The First Eigenvalues of an Operator Related to Selection in Population Genetics

By Norio Shimakura

Department of Mathematics, Kyoto University

(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1980)

1. Introduction. Among the diffusion approximations of 2-allelic gene frequency models in population genetics, one of the simplest is described by the Kolmogorov equation

(1)
$$\frac{\partial u}{\partial t} = \frac{x(1-x)}{4N} \frac{\partial^2 u}{\partial x^2} + sx(1-x)\frac{\partial u}{\partial x}.$$

Here we are taking account only of the selection force. x is the space variable running over the interval $0 \le x \le 1$. x and 1-x denote genetically the gene frequencies of 2 allels, say A and A' respectively. t is, genetically the generation, time variable running over the positive real line. 2N and s are independent of (t, x). 2N (population size) is a large positive integer, and s is a real number (|s| is small). 1+s and 1 are relative fitnesses of A and A' respectively. Hence, A is advantageous to A' if $s \ge 0$, and contrarily if $s \le 0$.

The stochastic process $x(t, \omega)$ starting from $0 < x(0, \omega) < 1$ reaches almost surely in a finite time to one of the boundary points x=0 or x=1. If we consider the eigenvalue problem

(2)
$$\begin{cases} \frac{x(1-x)}{4N} \frac{d^2u}{dx^2} + sx(1-x)\frac{du}{dx} + \mu u = 0, & \text{in } 0 < x < 1, \\ u(0) = u(1) = 0, \end{cases}$$

the first eigenvalue μ_1 is the rate of the absorption to the boundary (see [2] and [3]).

Hence it is of interest to know the magnitude of μ_1 as a function of 2N and s. If we change the parameters (2N, s) by

(3)
$$4Ns=\sigma$$
 and $4N\mu=\lambda$,

(2) becomes an equation for spheroidal wave functions ([1])

(4)
$$x(1-x)\frac{d^2u}{dx^2} + \sigma x(1-x)\frac{du}{dx} + \lambda u = 0, \text{ in } 0 < x < 1,$$

(5) $u(0) = u(1) = 0.$

In this note, we will estimate $\mu_1 = \mu_1(2N, s) = \lambda_1(4Ns)/(4N)$ as 4Ns is large. But the method being the same, we will treat the first 2m eigenvalues $\{\lambda_p(\sigma)\}_{p=1}^{2m}$ of (4)-(5), supposing that σ is large (*m* is arbitrary but fixed). The result will be stated in § 3.

2. Gene frequency model. The original model corresponding