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1o Introduction. Amonghe diffusion approximations o 2-allelic
gene frequency models in population genetics, one o the simplest is
described by the Kolmogorov equation
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Here we are taking account only o the selection orce. x is the space
variable running over the interval 0_x

_
1. x and 1- x denote geneti-

cally the gene requencies o 2 allels, say A and A’ respectively, t is,
genetically the generation, time variable running over the positive real
line. 2N and s are independent o (t, x). 2N (population size) is a large
positive integer, and s is a real number (Is] is small), l+s and 1 are
relative fitnesses o2 A and A’ respectively. Hence, A is advantageous
to A’ if s>_0, and contrarily if s_0.

The stochastic process x(t, o) starting from 0x(0, w) 1 reaches
almost surely in a finite time to one of the boundary points x-0 or
x-1. If we consider the eigenvalue problem

x(1-- x) du -t- sx(1- x) du +[u O, in 0 x 1,
( 2 ) 4N dx dx

u(0)=u(1) 0,
the first eigenvalue/ is the rate of the absorption to the boundary
(see [2] and [3]).

Hence it is o interest to know the magnitude of Z as a unction
o2 2N and s. I we change the parameters (2N, s) by
(3) 4Ns=a and 4N/=,
(2) becomes an equation for spheroidal wave unctions ([1])
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clx

5 ) u(0) u(1) 0.

In this note, we will estimate Z Z(2N, s) =,(4Ns)/(4N) as 4Ns is large.
But the method being the same, we will treat the first 2m eigenvalues

2m{()}__ o (4)-(5), supposing that is large (m is arbitrary but fixed).
The result will be stated in 3.

2. Gene frequency model. The original model corresponding


