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On Certain Numerical Invariants of Mappings
over Finite Fields. II
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(Communicated by Shokichi IYANAGA, M. J. A., Oct. 13, 1980)

Introduction. This is a continuation of the first paper 1 which
will be referred to as (I) in this paper. *) Our purpose here is to de-
termine invariants p,a (see (I.l.1), (I.1.6)) for quadratic mappings
F" X-+Y of vector spaces over a finite field K--Fq (q" odd) with respect
to the quadratic character of the multiplicative group of K. In par-
ticular, we shall obtain explicit values of invariants for such mappings
arising from pairs of quadratic forms.

1. Quadratic mappings. Let K be the finite field with q ele-
ments" K--Fq (q" odd). Denote by the character of K of order 2.
As usual, we extend Z to K by Z(0)=0. Let X, Y be vector spaces over
K of dimension n, m, respectively, and F" X-+Y be a quadratic map-
ping. By definition, F= F is a quadratic form on X for every
linear form e Y*. By (I.1.6), we have

(1.1) a= E ISl,
2Y*

where
(1.2) Sra--Ez(F(x)).

xX

Thanks to the following lemma, proof of which is left to the reader
as an exercise, the determination of a is much easier than that of

(1.3) Lemrna. Let V be a vector space of dimension r over K and
Q be a non-degenerate quadratic form on V. Then we have

fO if r is even,Sq= z(Q(x))
xe (q--1)q(r-)/Z((--1)(r-)/ det Q), if r is odd.

(1.4) Theorem. Let K=Fq (q" odd). Let F be a quadratic map-
ping X-+Y of vector spaces over K, n=dim X, m=dim Y. Let r be
the rank of the quadratic form F=I F, e Y*. Then, we have

p=q-(q--1) , q-.
odd

Proof. Write F as a diagonal orm ax+. +aXr, a e K.
By (1.3), we have

S= z(ax+
xX

E E z(a,x+... +aXr)
(Xr+l,’*’, Xn) (Xl,.." ,Xr2)

For example, we mean by (I.2.3) the item (2.3) in (I).


