93. On Certain Numerical Invariants of Mappings over Finite Fields. II

By Takashi Ono
Department of Mathematics, Johns Hopkins University
(Communicated by Shokichi Iyanaga, m. J. A., Oct. 13, 1980)

Introduction. This is a continuation of the first paper [1] which will be referred to as (I) in this paper.*) Our purpose here is to determine invariants ρ_{F}, σ_{F} (see (I.1.1), (I.1.6)) for quadratic mappings $F: X \rightarrow Y$ of vector spaces over a finite field $K=F_{q}$ ($q:$ odd) with respect to the quadratic character of the multiplicative group of K. In particular, we shall obtain explicit values of invariants for such mappings arising from pairs of quadratic forms.
§ 1. Quadratic mappings. Let K be the finite field with q elements: $K=F_{q}$ (q : odd). Denote by χ the character of K^{\times}of order 2. As usual, we extend χ to K by $\chi(0)=0$. Let X, Y be vector spaces over K of dimension n, m, respectively, and $F: X \rightarrow Y$ be a quadratic mapping. By definition, $F_{\lambda}=\lambda \circ F$ is a quadratic form on X for every linear form $\lambda \in Y^{*}$. By (I.1.6), we have

$$
\begin{equation*}
\sigma_{F}=\sum_{\lambda \in Y^{*}}\left|S_{F_{\lambda}}\right|^{2}, \tag{1.1}
\end{equation*}
$$

where
(1.2) $\quad S_{F_{\lambda}}=\sum_{x \in X} \chi\left(F_{\lambda}(x)\right)$.

Thanks to the following lemma, proof of which is left to the reader as an exercise, the determination of σ_{F} is much easier than that of ρ_{F}.
(1.3) Lemma. Let V be a vector space of dimension r over K and Q be a non-degenerate quadratic form on V. Then we have

$$
S_{Q}=\sum_{x \in V} \chi(Q(x))= \begin{cases}0, & \text { if } r \text { is even }, \\ (q-1) q^{(r-1) / 2} \chi\left((-1)^{(r-1) / 2} \operatorname{det} Q\right), & \text { if } r \text { is odd } .\end{cases}
$$

(1.4) Theorem. Let $K=\boldsymbol{F}_{q}$ (q : odd). Let F be a quadratic mapping $X \rightarrow Y$ of vector spaces over $K, n=\operatorname{dim} X, m=\operatorname{dim} Y$. Let r_{λ} be the rank of the quadratic form $F_{\lambda}=\lambda \circ F, \lambda \in Y^{*}$. Then, we have

$$
\rho_{F}=q^{n-m}(q-1) \sum_{r_{\lambda} \text { odd }} q^{n-r_{\lambda}} .
$$

Proof. Write F_{λ} as a diagonal form $a_{1} x_{1}^{2}+\cdots+a_{r_{\lambda}} x_{r_{\lambda}}^{2}, a_{i} \in K^{\times}$. By (1.3), we have

$$
\begin{aligned}
S_{F_{\lambda}} & =\sum_{x \in X} \chi\left(a_{1} x_{1}^{2}+\cdots+a_{r_{\lambda}} x_{r_{\lambda}}^{2}\right) \\
& =\sum_{\left(x_{r_{\lambda}+1}+\cdots, x_{n}\right)} \sum_{\left(x_{1}, \ldots, x_{r_{\lambda}}\right)} \chi\left(a_{1} x_{1}^{2}+\cdots+a_{r_{\lambda}} x_{r_{\lambda}}^{2}\right)
\end{aligned}
$$

*) For example, we mean by (I.2.3) the item (2.3) in (I).

