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69. A Note on the Tate Conjecture for K3 Surfaces
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(Communicated by Kunihiko KODAIRA, M. J. A., June 12, 1980)

This note discusses the openness of the image of the Galois group
in the second -adic cohomology of a K3 surface with large Picard
number defined over an algebraic number field. Especially, we prove
the Tate conjecture for a K3 surface, whose Picard number is 20 or 19.

Let X be a smooth projective geometrically irreducible surface
defined over an algebraic number field k, which satisfies the conditions’

/2r/k x and Hi(X, 3.r) O.
Such a surface is called a K3 surface ([12]). The Picard number p of
X is defined by

p=dim NS(X(R)k)(R)z Q,
where is the algebraic closure of k, and NS(X(R)) is the Nron-Severi
group of X(R)k. For any embedding of the field a" k---C, put

p=dim NS(X(R),, C)(R)z Q.
Then the equality p=p holds.

The Betti numbers of X are given by
b0=b=l, b=b=0, b=22.

Put pk=dim NS(X)(R)z Q, and assume that p=p. We call
the Lefschetz number of X, which is the number of transcendental
cycles independent modulo algebraic cycles.

Now let us recall the Brauer group Br(X(R)) of X(R). By
Grothendieck [1], it is known to be a torsion group, and the Tate
module T(Br (X(R))) is given by the exact sequence of Gal (/k)-modules

0 >NS(X)(R)Z )Ht(X(R), Z[1])---T(Br (X(R)/)) 30.
Here Z[1] is the Tare twist.

Put V= T(R)z Q. The intersection form on Ht(X(R), Q) is a
symmetric bilinear form with values in Q[-2]. We denote by V(T)
the orthogonal complement of NS(X)(R)z Q[-1]. Then the restriction
of the intersection form to V(T) defines a non-degenerate bilinear form
with values in Q[-2], and the above exact sequence induces an iso-
morphism of the -adic representations of Gal (k//)"

V(T)[1] ;V(Br (X(R)k)).
Let us consider the &adic representation

pr,’ Gal (k/k,) ;Aut (V(T)).
By definition, 2=b.-p=dim V(T). Since the characteristic of k is


