67. Nonexistence of Minimizing Harmonic Maps from 2-Spheres

By Akito Futaki
Department of Mathematics, University of Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., June 12, 1980)

§ 1. Introduction. Let (M, g) and (N, h) be compact Riemannian manifolds and $C^{\infty}(N, M)$ be the space of all smooth maps from N to M with the C^{∞} topology. For $f \in C^{\infty}(N, M)$ we define its energy $E(f)$ by

$$
\begin{equation*}
E(f)=\frac{1}{2} \int_{N} h^{i j} \frac{\partial f^{\alpha}}{\partial x^{i}} \frac{\partial f^{\beta}}{\partial x^{j}} g_{\alpha \beta} * 1 . \tag{1.1}
\end{equation*}
$$

A harmonic map is, by definition, a critical point of the functional E. A harmonic map is said to be minimizing if it minimizes energy in its connected component of $C^{\infty}(N, M)$, i.e. in its homotopy class.

When $\operatorname{dim} N=1, N$ is a circle S^{1} and a harmonic map $f: S^{1} \rightarrow M$ is a closed geodesic. It is well known that every component of $C^{\infty}\left(S^{1}, M\right)$ contains a minimizing closed geodesic. In contrast with this, when $\operatorname{dim} N=2$, it is not always true that there exists a minimizing harmonic map in each component of $C^{\infty}(N, M)$. For instance there exists no minimizing harmonic map of degree ± 1 from a Riemann surface of genus $\geqq 1$ to a Riemann sphere whatever metrics are chosen on them ([5]).

On the other hand, Sacks and Uhlenbeck [8] established an existence result when $N=S^{2}$. Their result was applied to the proof of Frankel's conjecture by Siu and Yau [9] and to the study on the topology of 3-manifolds by Meeks and Yau [7]. The following is a result of Sacks and Uhlenbeck refined by Siu and Yau. Let M be a compact 1 -connected Riemannian manifold. Let $f_{0} \in C^{\infty}\left(S^{2}, M\right)$. Then there exist minimizing harmonic maps $f_{1}, \cdots, f_{k} \in C^{\infty}\left(S^{2}, M\right)$ such that $\sum_{i=1}^{k} f_{i}=f_{0}$ in $\pi_{2}(M)$ and that

$$
\begin{equation*}
\sum_{i=1}^{k} E\left(f_{i}\right)=\inf \left\{\sum_{i=1}^{p} E\left(g_{i}\right) \mid p \in N, \sum_{i=1}^{p} g_{i}=f_{0} \text { in } \pi_{2}(M)\right\} . \tag{1.2}
\end{equation*}
$$

However it has been unknown whether one can always find a single minimizing harmonic map homotopic to f_{0} or not.

The purpose of this paper is to give a Riemannian manifold M and a component of $C^{\infty}\left(S^{2}, M\right)$ such that no minimizing harmonic map exists in this component.
§ 2. Statement of the result. Theorem. Let M be a compact 1-connected Kähler surface. Suppose there are two disjoint rational

