67. Nonexistence of Minimizing Harmonic Maps from 2.Spheres

By Akito FUTAKI

Department of Mathematics, University of Tokyo

(Communicated by Kunihiko KODAIRA, M. J. A., June 12, 1980)

§ 1. Introduction. Let (M, g) and (N, h) be compact Riemannian manifolds and $C^{\infty}(N, M)$ be the space of all smooth maps from N to M with the C^{∞} topology. For $f \in C^{\infty}(N, M)$ we define its *energy* E(f) by

(1.1)
$$E(f) = \frac{1}{2} \int_{N} h^{ij} \frac{\partial f^{\alpha}}{\partial x^{i}} \frac{\partial f^{\beta}}{\partial x^{j}} g_{\alpha\beta} * 1.$$

A harmonic map is, by definition, a critical point of the functional E. A harmonic map is said to be *minimizing* if it minimizes energy in its connected component of $C^{\infty}(N, M)$, i.e. in its homotopy class.

When dim N=1, N is a circle S^1 and a harmonic map $f: S^1 \rightarrow M$ is a closed geodesic. It is well known that every component of $C^{\infty}(S^1, M)$ contains a minimizing closed geodesic. In contrast with this, when dim N=2, it is not always true that there exists a minimizing harmonic map in each component of $C^{\infty}(N, M)$. For instance there exists no minimizing harmonic map of degree ± 1 from a Riemann surface of genus ≥ 1 to a Riemann sphere whatever metrics are chosen on them ([5]).

On the other hand, Sacks and Uhlenbeck [8] established an existence result when $N=S^2$. Their result was applied to the proof of Frankel's conjecture by Siu and Yau [9] and to the study on the topology of 3-manifolds by Meeks and Yau [7]. The following is a result of Sacks and Uhlenbeck refined by Siu and Yau. Let M be a compact 1-connected Riemannian manifold. Let $f_0 \in C^{\infty}(S^2, M)$. Then there exist minimizing harmonic maps $f_1, \dots, f_k \in C^{\infty}(S^2, M)$ such that

 $\sum_{i=1}^{k} f_i = f_0$ in $\pi_2(M)$ and that

(1.2)
$$\sum_{i=1}^{k} E(f_i) = \inf \left\{ \sum_{i=1}^{p} E(g_i) \mid p \in N, \sum_{i=1}^{p} g_i = f_0 \text{ in } \pi_2(M) \right\}.$$

However it has been unknown whether one can always find a single minimizing harmonic map homotopic to f_0 or not.

The purpose of this paper is to give a Riemannian manifold M and a component of $C^{\infty}(S^2, M)$ such that no minimizing harmonic map exists in this component.

Statement of the result. Theorem. Let M be a compact § 2. 1-connected Kähler surface. Suppose there are two disjoint rational