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Introduction. The dihedral group D, and the quaternion group
Q. of order 8 have the same character table (Feit [1, §§7 and 11]).
Generally the two non-abelian groups of order p* (p a prime number)
have the same character table (Brauer [3, §4]). It is easily shown
that these groups are characterized as the representation groups of
the product Z, X Z, of cyclic groups of order p.

In this note, we consider the representation groups of Z,. X Z,.,
the product of cyclic groups of order p”, and we deal with those com-
plex characters. In §1, we show that there exist two non-isomorphic
representation groups of Z,.XZ,. (Theorem 1). When n>2, these
groups have not the same character table (§ 3, Corollary 2), but have
the conjugacy classes of the type described in Proposition 1. Their
non-linear irreducible characters are constructed by the abelian
residue groups of certain normal subgroups (Theorem 2).

1. Generators and relations. Let G be a finite group and C* the
multiplicative group of the complex number field C. When G acts
trivially on C*, the finite abelian group H*G, C*) is called the Schur
multiplier of G. A group H is called a representation group of G
when H has a central subgroup A such that 1) H/A=G, 2) |A]
=|H*G, C*)| and 3) A is contained in the commutator subgroup D(H).

Let H be a representation group of Z,. X Z,., where p is a prime
number and » is a positive integer. The sequence

1-A—-H—Z,. X Z,,—1
is exact, and A=D(H) is contained in the center Z(H) of H. We
choose representatives ¢, » of inverse images of two generators of
ZnwXZ,m Then A is the cyclic group generated by the commutator
s=t"'rtr-* of order p*, because H(ZnX Z, C*)=Z, . (see Suzuki [2,
p. 261]).
Consequently, the elements ¢, and s generate H, i.e.,

(1) H={(t,r,s)

and satisfy the relations

(2) r*, tP"e(s), s”"=1

(3) ts=st, rs=sr and t¢'rt=rs

where p™ is the least positive integer ¢ such that ¢?¢ (s} (this p” is
also the least positive integer ¢ such that »? e (s)). Note that A=Z(H).



