7. Representation Groups of the Group $Z_{p^{n}} \times Z_{p^{n}}$

By Kanzi Suzuki
Department of Mathematics, Waseda University
(Communicated by Kunihiko Kodaira, m. J. A., Jan. 12, 1980)

Introduction. The dihedral group D_{2} and the quaternion group Q_{2} of order 8 have the same character table (Feit [1, $\S \S 7$ and 11]). Generally the two non-abelian groups of order p^{3} (p a prime number) have the same character table (Brauer [3, §4]). It is easily shown that these groups are characterized as the representation groups of the product $\boldsymbol{Z}_{p} \times \boldsymbol{Z}_{p}$ of cyclic groups of order p.

In this note, we consider the representation groups of $\boldsymbol{Z}_{p^{n}} \times \boldsymbol{Z}_{p^{n}}$, the product of cyclic groups of order p^{n}, and we deal with those complex characters. In § 1, we show that there exist two non-isomorphic representation groups of $Z_{p^{n}} \times Z_{p^{n}}$ (Theorem 1). When $n \geqq 2$, these groups have not the same character table (§ 3, Corollary 2), but have the conjugacy classes of the type described in Proposition 1. Their non-linear irreducible characters are constructed by the abelian residue groups of certain normal subgroups (Theorem 2).

1. Generators and relations. Let G be a finite group and C^{*} the multiplicative group of the complex number field C. When G acts trivially on C^{*}, the finite abelian group $H^{2}\left(G, C^{*}\right)$ is called the Schur multiplier of G. A group H is called a representation group of G when H has a central subgroup A such that 1) $H / A \cong G$, 2) $|A|$ $=\left|H^{2}\left(G, C^{*}\right)\right|$ and 3$) A$ is contained in the commutator subgroup $D(H)$.

Let H be a representation group of $Z_{p^{n}} \times Z_{p^{n}}$, where p is a prime number and n is a positive integer. The sequence

$$
1 \rightarrow A \rightarrow H \rightarrow Z_{p^{n}} \times Z_{p^{n}} \rightarrow 1
$$

is exact, and $A=D(H)$ is contained in the center $Z(H)$ of H. We choose representatives t, r of inverse images of two generators of $\boldsymbol{Z}_{p^{n}} \times \boldsymbol{Z}_{p^{n}}$. Then A is the cyclic group generated by the commutator $s=t^{-1} r t r^{-1}$ of order p^{n}, because $H^{2}\left(\boldsymbol{Z}_{p^{n}} \times \boldsymbol{Z}_{p^{n}}, C^{*}\right) \cong \boldsymbol{Z}_{p^{n}}$ (see Suzuki [2, p. 261]).

Consequently, the elements t, r and s generate H, i.e.,
(1)

$$
H=\langle t, r, s\rangle
$$

and satisfy the relations

$$
\begin{equation*}
r^{p^{n}}, \quad t^{p^{n}} \in\langle s\rangle, \quad s^{p^{n}}=1 \tag{2}
\end{equation*}
$$

(3)

$$
t s=s t, \quad r s=s r \quad \text { and } \quad t^{-1} r t=r s
$$

where p^{n} is the least positive integer q such that $t^{q} \in\langle s\rangle$ (this p^{n} is also the least positive integer q such that $r^{q} \in\langle s\rangle$). Note that $A=Z(H)$.

