7. Representation Groups of the Group $Z_{p^n} \times Z_{p^n}$

By Kanzi Suzuki

Department of Mathematics, Waseda University

(Communicated by Kunihiko Kodaira, M. J. A., Jan. 12, 1980)

Introduction. The dihedral group D_2 and the quaternion group Q_2 of order 8 have the same character table (Feit [1, §§ 7 and 11]). Generally the two non-abelian groups of order p^3 (p a prime number) have the same character table (Brauer [3, § 4]). It is easily shown that these groups are characterized as the representation groups of the product $Z_p \times Z_p$ of cyclic groups of order p.

In this note, we consider the representation groups of $Z_{p^n} \times Z_{p^n}$, the product of cyclic groups of order p^n , and we deal with those complex characters. In § 1, we show that there exist two non-isomorphic representation groups of $Z_{p^n} \times Z_{p^n}$ (Theorem 1). When $n \ge 2$, these groups have not the same character table (§ 3, Corollary 2), but have the conjugacy classes of the type described in Proposition 1. Their non-linear irreducible characters are constructed by the abelian residue groups of certain normal subgroups (Theorem 2).

1. Generators and relations. Let G be a finite group and C^* the multiplicative group of the complex number field C. When G acts trivially on C^* , the finite abelian group $H^2(G, C^*)$ is called the Schur multiplier of G. A group H is called a representation group of G when H has a central subgroup A such that 1) $H/A \cong G$, 2) $|A| = |H^2(G, C^*)|$ and 3) A is contained in the commutator subgroup D(H).

Let H be a representation group of $\mathbb{Z}_{p^n} \times \mathbb{Z}_{p^n}$, where p is a prime number and n is a positive integer. The sequence

$$1 \rightarrow A \rightarrow H \rightarrow Z_{p^n} \times Z_{p^n} \rightarrow 1$$

is exact, and A = D(H) is contained in the center Z(H) of H. We choose representatives t, r of inverse images of two generators of $Z_{p^n} \times Z_{p^n}$. Then A is the cyclic group generated by the commutator $s = t^{-1}rtr^{-1}$ of order p^n , because $H^2(Z_{p^n} \times Z_{p^n}, C^*) \cong Z_{p^n}$ (see Suzuki [2, p. 261]).

Consequently, the elements t, r and s generate H, i.e.,

$$(1) H=\langle t,r,s\rangle$$

and satisfy the relations

$$(2) r^{p^n}, \quad t^{p^n} \in \langle s \rangle, \quad s^{p^n} = 1$$

(3)
$$ts=st$$
, $rs=sr$ and $t^{-1}rt=rs$

where p^n is the least positive integer q such that $t^q \in \langle s \rangle$ (this p^n is also the least positive integer q such that $r^q \in \langle s \rangle$). Note that A = Z(H).