63. On Surfaces of Class VII₀ with Curves

By Ichiro ENOKI

Department of Mathematics, University of Tokyo

(Communicated by Kunihiko KODAIRA, M. J. A., June 12, 1980)

§ 1. Let S be a surface, i.e., a compact complex manifold of complex dimension 2. We write $b_i(S)$ for the *i*-th Betti number of S. For a divisor D on S, we write D^2 for its self intersection number. A surface S is said to be of Class VII_0 if S is minimal and $b_1(S)=1$. When a surface S is of Class VII_0 , it is well known that any divisor D on S has $D^2 \leq 0$.

In this note, we shall state theorems on a surface of Class VII₀ which has a divisor D with $D^2=0$. For this purpose, we shall construct surfaces $S_{n,\alpha,t}$ $(n>0, 0<|\alpha|<1, t \in C^n)$, which satisfy the following conditions:

(1.1) $S_{n,\alpha,t}$ is of Class VII₀,

(1.2) $b_2(S_{n,\alpha,t}) = n$,

(1.3) $S_{n,\alpha,t}$ has a connected curve $D_{n,\alpha,t}$ with $D_{n,\alpha,t}^2 = 0$.

Our main result is the following

Theorem 1. Let S be a surface of Class VII₀ with $b_2(S) = n > 0$. If S has a divisor $D \neq 0$ with $D^2 = 0$, then S is biholomorphic to $S_{n,\alpha,t}$ for some $0 < |\alpha| < 1$, $t \in \mathbb{C}^n$ and $D = mD_{n,\alpha,t}$ for some integer $m \neq 0$.

In view of the classification theory of Kodaira on surfaces, Theorem 1 implies

Theorem 2. Let S be a surface and C be a curve on S. Assume that

i) there is a non-constant holomorphic function on S-C,

ii) the number of compact irreducible curves on S-C is finite. Then S-C has a structure of a quasi-projective variety.

To state theorems on deformations of $S_{n,a,t}$, set

$$T_{n} = \{ \alpha \in C \mid 0 < |\alpha| < 1 \} \times C^{n},$$

$$S_{n} = \bigcup_{(\alpha,t) \in T_{n}} S_{n,\alpha,t} \qquad \text{(disjoint union),}$$

$$\mathcal{D}_{n} = \bigcup_{(\alpha,t) \in T_{n}} D_{n,\alpha,t} \qquad \text{(disjoint union),}$$

$$\mathcal{A}_{n} = S_{n} - \mathcal{D}_{n}, \qquad A_{n,\alpha,t} = S_{n,\alpha,t} - D_{n,\alpha,t}.$$

Let $\pi: S_n \to T_n$ be the projection so that $\pi^{-1}(\alpha, t) = S_{n,\alpha,t}$. Let $\iota: S_{n,\alpha,t}$ $\to S_n$ be the natural inclusion. Then S_n has a complex structure such that the projection π is a holomorphic map of maximal rank and the inclusion ι is biholomorphic. Let Θ be the sheaf of germs of holomorphic vector fields on $S_{n,\alpha,t}$, i.e., the sheaf of germs of infinitesimal