59. A Note on Quasilinear Evolution Equations

By Kiyoko FURUYA

Department of Mathematics, Tokyo Metropolitan University

(Communicated by Kôsaku Yosida, M. J. A., June 12, 1980)

§ 1. Introduction. In this note we give a generalization of the result of Massey [2] who proved analyticity in t of solutions to quasilinear evolution equations

(1.1)
$$\frac{du}{dt} + A(t, u)u = f(t, u), \qquad 0 \leq t \leq T,$$

(1.2) $u(0) = u_0.$

The unknown, u, is a function of t with values in a Banach space X. For fixed t and $v \in X$, the linear operator -A(t, v) is the generator of an analytic semigroup in X and $f(t, v) \in X$. We consider the equation (1.1) under the assumption that the domain $D(A(t, u)^h)$ of $A(t, u)^h$ is independent of t, u for some h > 0, while Massey discussed it in the case that D(A(t, u)) is constant.

In the following L(X, Y) is the space of linear operators from normed space X to normed space Y, and B(X, Y) is the space of bounded linear operators from normed space X to normed space Y. L(X)=L(X, X) and B(X)=B(X, X). $\| \|$ will be used for the norm in both X and B(X).

The author wishes to express her hearty thanks to Prof. Y. Kōmura for his kind advices and encouragements.

§ 2. The main result. We shall make the following assumptions :

A-1°) $u_0 \in D(A_0)$ and $A_0^{-\alpha}$ is a well-defined operator $\in B(X)$ where $A_0 \equiv A(0, u_0)$.

A-2°) There exist h=1/m, where m is an integer, $m \ge 2$, R > 0, $T_0 > 0$, $\phi_0 > 0$ and $0 \le \alpha < h$, such that $A(t, A_0^{-\alpha} w)$ is a well-defined operator e L(X) for each $t \in \Sigma_0 \equiv \{t \in C; |\arg t| < \phi_0, 0 \le |t| < T_0\}$ and $w \in N$ $\equiv \{w \in X; ||w - A_0^{\alpha} u_0|| < R\}.$

A-3°) For any $t \in \Sigma_0$ and $w \in N$

(2.1) {the resolvent of $A(t, A_0^{-\alpha}w)$ contains the left half-plane and the resolvent G much that $\|(t) - A(t, A_0^{-\alpha}w))^{-1}\| \leq C(1+|t|)^{-1}$

there exists C_1 such that $\|(\lambda - A(t, A_0^{-\alpha}w))^{-1}\| \leq C_1(1+|\lambda|)^{-1}$.

A-4°) The domain $D(A(t, A_0^{-\alpha}w)^{\hbar}) = D$ of $A(t, A_0^{-\alpha}w)^{\hbar}$ is independent of $t \in \Sigma_0$ and $w \in N$.

A-5°) The map $\Phi: (t, w) \mapsto A(t, A_0^{-\alpha}w)^h A_0^{-h}$ is analytic from $(\Sigma_0 \setminus \{0\}) \times N$ to B(X).

A-6°) There exist $C_2, C_3, \sigma, 1-h < \sigma \leq 1$ such that (2.2) $||A(t, A_0^{-\alpha}w)^h A(s, A_0^{-\alpha}v)^{-h}|| \leq C_2$ $t, s \in \Sigma_0, w, v \in N$,