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In §1 we present several conjectures. In §2 we give partial
answers to them. In §3 we discuss remaining problems.

8§ 1. Conjectures. Conjecture (4,). Let U be a complex mani-
fold of dimension n with the homotopy type of a point. Suppose that
there is a Kahler smooth compactification M of U such that D=M—U
s o smooth divisor on M. Then U is isomorphic to an affine linear
space A",

Remark 1. The smoothness of D is the essential assumption.
Without it, U need not be 4" (see [12]).

In § 2 we reduce (4,) to the following

Conjecture (B,). Let M be a compact complex manifold with
dim M=n and let D be a smooth ample divisor on M. Suppose that
the natural homomorphism H, (D ; Z)—H, (M ; Z) is bijective for 0<p
<2n—2. Then M=P" and D is a hyperplane section on it.

Remark 2. An affirmative answer to (B,) would solve the ques-
tion of [5] (4.15) and give a sharpened form of Proposition V in [13].
See also § 2, Corollary 3.

In § 2 we reduce (B,) to the following

Conjecture (C,). Let M be a projective complex manifold such
that the cohomology ring H(M;Z) is isomorphic to H'(P"; Z)
=Z[x]/(x**Y). Suppose further that c,(M) is positive. Then M=P".

Remark 3. It is well known that any projective manifold home-
omorphic to P" is holomorphically isomorphic to P", provided that ¢,
is positive. Moreover, the positivity assumption on ¢, is not necessary
if n is odd (see [8] and [11]). The proof depends on the theory of
Pontrjagin classes.

Remark 4. (C,) would not be true without the assumption on the
ring structure. Indeed, any odd dimensional hyperquadric has a co-
homology group isomorphic to that of P*.

§2. Partial answers. Theorem 1. Conjecture C, is true for
n<b.

We give an outline of our proof for the case n=5. In view of
the isomorphism H'(M; Z)=H'(P"; Z), we regard the Chern classes



