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Introduction. Let L be an infinite dimensional formal Lie algebr
corresponding to some infinite transformation group. We are inter-
ested in the first cohomology group H(L) of L with adjoint represen-
tation. In this paper we will treat the following two types of infinite
dimensional Lie algebras

(a) infinite dimensional transitive fiat Lie algebras,
(b) infinite dimensional intransitive Lie algebras L[W*] whose

transitive parts L are infinite and simple.
Throughout this paper, all vector spaces and Lie algebras are

assumed to be defined over the field C of complex numbers.
1. Let V be a finite dimensional vector space. We denote by

D(V) the Lie algebra of all formal vector fields over V. The Lie
algebra D(V) can be written as D(V)= 1-[ V(R)Sp(V*) (complete direct

_0

sum), where SP(V*) denotes p-times symmetric tensor of the dual space
V* of V. By a transitive fiat Lie algebra we mean a Lie subalgebra
L= l-I g of D(V) satisfying the following conditions:
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(1) Each B is a subspace of V(R)S/(V*).
(2) _=V (transitivity condition).
Since L is a Lie algebra, it must hold that
(3) [,]+.
A Lie subalgebra 0 is called a linear isotropy algebra of L. We

say that a Lie algebra L= 1-[ g is derived from g0 if each g, coincides
p>- -1

with the -th prolongation of 0.
We now give two eriteria for () to be of finite dimension.
Theorem 1. = 8

finite dimensional.
Theorem 2. Let L= [I be an infinite transitive fiat Lie

2>- -1

algebra whose linear isotropy algebra o contains a trivial center.
Then H(L) is finite dimensional. Furthermore if L is derived from o,
then H(L) is isomorphic to (0)/0, where (o) denotes the normalizer

o o in (V).


