4. On the Initial Boundary Value Problem of the Linearized Boltzmann Equation in an Exterior Domain

By Seiji UKAI*) and Kiyoshi ASANO**)

(Communicated by Kôsaku YOSIDA, M. J. A., Jan. 12, 1980)

1. Problem and result. Let O be a bounded convex domain in \mathbb{R}^n $(n \ge 3)$ with a smooth boundary and $\Omega = \mathbb{R}^n \setminus \overline{O}$. Put $Q = \Omega \times \mathbb{R}^n$ and $S^{\pm} = \{(x, \xi) \in \partial\Omega \times \mathbb{R}^n; n(x) \cdot \xi \ge 0\}$, where n(x) is the inner normal of $\partial\Omega$ at x. For $u = u(t, x, \xi)$ which is related to the density of gas particles at time $t \ge 0$ and a point $x \in \Omega$ with a velocity $\xi \in \mathbb{R}^n$, our equation is described as follows;

(1.1)
$$\frac{\partial u}{\partial t} = -\sum_{j=1}^{n} \xi_j \frac{\partial u}{\partial x_j} - \nu(\xi) u + \int_{\mathbf{R}^n} K(\xi, \eta) u(t, x, \eta) d\eta.$$

(1.2) $u|_{s+} = C(u|_{s-}).$

(1.3) $u|_{t=0} = u_0(x, \xi).$

Here C is a linear operator from a function space on S^- to the similar one on S^+ . Our assumptions on the collision operator $L = \nu(\xi) - K$ are those of cut-off hard potentials.

(1.4) $\nu(\xi)$ is continuous in ξ , depends only on $|\xi|$ and $\nu(\xi) \ge \nu_0 > 0$ for some constant ν_0 .

(1.5) $K(\xi, \eta) = K(\eta, \xi)$ is real valued and continuous for $\xi \neq \eta$, $\int_{\mathbb{R}^n} |K(\xi, \eta)|^p \, d\eta < \infty \quad \text{for some } p, \quad 1 < p < \infty, \quad \int_{\mathbb{R}^n} |K(\xi, \eta)| \, (1 + |\eta|)^{-\alpha} d\eta \\ \leq d_{\alpha} (1 + |\xi|)^{-\alpha - 1} \, \text{for any } \alpha \ge 0.$

Moreover the operator L is non-negative self-adjoint in $L^2(\mathbb{R}^n)$ and has an isolated eigenvalue 0 with eigenfunctions $\{1, \xi_1, \dots, \xi_n, |\xi|^2\}$ $\times \exp\left(-\frac{1}{2}|\xi|^2\right)$. (Note that the operator K induced from the integral

kernel $K(\xi, \eta)$ is a compact self-adjoint operator in $L^2(\mathbb{R}^n)$.)

As for the operator C we assume

(1.6) $||C|| \leq 1$

as an operator from $L^2(S^-; \rho)$ to $L^2(S^+; \rho)$, where $\rho = \rho(x, \xi) = |n(x) \cdot \xi|$ and $L^2(S^{\pm}; \rho)$ is the space of square integrable function on S^{\pm} with respect to the measure $\rho(x, \xi) dS_x d\xi$.

We define the linearized Boltzmann operator B by

(1.7)
$$B = -\sum_{j=1}^{n} \xi_j \frac{\partial}{\partial x_j} - \nu(\xi) + K = -\xi \cdot \nabla_x - L \text{ with domain } D(B)$$

^{*)} Department of Applied Physics, Osaka City University.

^{**&#}x27; Institute of Mathematics, Yoshida College, Kyoto University.