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1o The purpose of the present note is. to prove a large sieve ver-
sion of a recent sieve result of Selberg [4] by combining his. argument
with that o our preceding note [1] o this series.

Before stating our results we have to introduce some conventions."
For a prime p let Y2(p9 be a set o residues (mod pg, and let us assume
that Y2(p") and 9(p) are disjoint (mod p)whenever 0fla. For a
composite d 9(d) denotes the set of residues (mod d) arising rom those
o 9(p") with p"]]d (the maximum power of p dividing d), and we write
n e 9(d) to indicate that n (mod p") e 9@9 or each p" d; so n e 9(1)
for any n.

Following Selberg we put

O(p) 1 (p) p ,
=1

g(d)=d- {19(p910(p")/O(p"-)},

9(p") being the cardinality of the set; here and in what ollows we
may assume 0(p")0 always.. Also, i d]r, we put

t(r, &= t(p, p), t*(r, d)= t*(p, p),
pllr piir

where t(p", p)= 1 if a=fl, =[9(p") p-" if fl=0, and --I 9(p")[ (O(p)p9-if O<fl<a;t*(p",p)=l if a=fl, =--19(p")l(O(p"-gp")- if fl=0, and
=9(p")I(O(p"-)p")- i 0<fl<a. Further F(n, 9) stands for the sum

E t*(r, u)
neg(u)

which is equal to t*(r, 1) if n e 9(p) or each pIr, (fl > 0).
Then our results are as ollows"
Theorem. Uniformly for any complex numbers a and for any

M, N, Q>O, we have

*
q z(n)F(n, 9)aE’

q z(moq) (q)g(r) <-+
(q,r) =1

(N+Q) laI,
M<nM+N

where is the Eler function, * denotes a sum over primitive
Dirichlet characters Z, and ’ indicates that r is restricted by g(r)

Corollary. If a=0 whenever there exists a p" such that n


