21. On the Homogeneous Lüroth Theorem

By Shigeru IITAKA

Department of Mathematics, University of Tokyo

(Communicated by Kunihiko KODAIRA, M. J. A., March 12, 1979)

§1. Lüroth theorem. Let $f, g \in C[X_i, \dots, X_n]$ such that f is irreducible and suppose that polynomials g and f are algebraically dependent. Then g is a polynomial of f. In particular, if g is also irreducible, then $g = \alpha f + \beta, \alpha$ and $\beta \in C$.

The above statement is equivalent to the Lüroth theorem in the case of polynomials. For the sake of convenience, we begin by giving a proof to the above statement by using logarithmic genera [1].

Proof. Let $A^n = \operatorname{Spec} C[X_1, \dots, X_n]$, $\Gamma = \operatorname{Spec} C[f, g]$, and $C = \operatorname{Spec} C[f] \cong A^1$. Denoting by Γ' the normalization of Γ in A^n , we have the following diagram:

Hence $\bar{g}(\Gamma') \leq \bar{q}(A^n) = 0$. Since Γ' is normal, we have $\Gamma' \cong A^1$ by [3, Example 1]. This implies that $\Gamma' = \operatorname{Spec} C[\theta], \theta \in C[X_1, \dots, X_n]$. From the inclusions $C[f] \subseteq C[f, g] \subseteq C[\theta]$, we infer readily that f is a poly nomial of θ . However, since f is irreducible, f is a linear form of 1 and θ , hence C[f, g] = C[f]. Q.E.D.

§ 2. Quasi-Albanese maps of complements of P^n . Let F_0, F_1 , ..., F_r be mutually distinct (up to constant multiple) irreducible polynomials with $d_j = \deg F_j$. Consider a sublattice L of Z^{1+r} defined by

 $L = \{ \boldsymbol{a} \in \boldsymbol{Z}^{1+r} ; \langle \boldsymbol{a}, \boldsymbol{d} \rangle = 0, \ \boldsymbol{d} = (d_0, \cdots, d_r) \}.$

Let (a_1, \dots, a_r) be a Z-basis of L. Put

 $\Phi_j = \prod F_i^{m(l)}$, where $a_j = (m(1), \dots, m(r))$.

Then we have a morphism

 $\alpha = (\Phi_1, \cdots, \Phi_r) : V = P^n - \bigcup V_+(F_j) \longrightarrow C^{*r}.$

 α coinsides with the quasi-Albanese map of V (cf. [2]). Denote by Δ the closed image of V by α . Δ is an affine variety whose coordinate ring $\Gamma(\Delta, \mathcal{O}_A)$ is isomorphic to

$$C[\Phi_1, \cdots, \Phi_r, \Phi_1^{-1}, \cdots, \Phi_r^{-1}].$$

Proposition 1. Suppose that dim $\Delta = 1$. Then

i) Δ is non-singular,

ii) any general fiber of $\alpha: V \rightarrow \Delta$ is irreducible.

Proof. This follows easily from the universality of quasi-Albanese