20. On Excessive Functions

By L. Stoica
Department of Mathematics, INCREST,** Bucharest
(Communicated by Kôsaku Yosida, M. J. A., March 12, 1979)

It was pointed out by T. Watanabe [4, II] that Dynkin's criterion of excessiveness of a function f, is sometimes inconvenient for applications, because it requires two strong conditions:

1) the function f is finely continuous,
2) the function f is supermedian with respect to a very large family of sets.

As an alternative of Dynkin's criterion, Watanabe proved another criterion, in which he replaced the condition 1) with the stronger one, that f was lower semicontinuous, while condition 2) was weakened by considering a family \mathcal{U} that had to be only a base. Furthermore it was conjectured that in this criterion the lower semicontinuity of f can be replaced by a weaker continuity condition stated in terms of \mathcal{U}.

Here we give a positive answer to this conjecture, in the case of an instantaneous state process. A version of this criterion is very useful in the case of a Markov process associated to an elliptic strongly degenerated differential operator [3].

Let E be a locally compact space with a countable open base and \mathcal{E} the σ-algebra of Borel sets of E. Further let ($\Omega, \mathcal{M}, \mathscr{M}_{t}, X_{t}, \theta_{t}, P^{x}$) be a standard process with state space (E, \mathcal{E}). For notations and definitions in the Markov process theory we refer to [1].

If A is a nearly Borel set, $f \in \mathcal{E}_{+}$and $x \in E$ we denote $E^{x}\left[f\left(x_{T_{C A}}\right)\right]$ by $H^{A} f(x)$.

Suppose that U is a family of nearly Borel sets such that for each point $x \in E$ and each neighbourhood V of x there exists $U \in \mathcal{U}, x \in \dot{U}$, $U \subset V$. For any $x \in E$ the family $\Psi(x)=\{U \in \mathscr{U} / x \in \mathscr{U}\}$ becomes a directed set under the order relation " $U_{1} \leqslant U_{2}$ if $U_{2} \subset \dot{U}_{1}$ ".

Theorem. If $s: E \rightarrow \bar{R}_{+}$is an universally measurable function such that:
(a) $H^{U} s \leqslant s \quad$ for any $U \in Q$,
(b) $s(x)=\lim _{U \in \mathcal{U}(x)} H^{U} s(x) \quad$ for any $x \in E$,
then s is excessive.
Proof. We consider a metric d on E and for each fixed $n \in N$,

[^0]
[^0]: *) Institutul Naṭional Pentru Creaṭie Ṣtiinṭificǎ Ṣi Tecḥnicǎ.

