89. On Some Series of Regular Irreducible Prehomogeneous Vector Spaces

By Tatsuo Kimura*) and Masakazu Muro**)
(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1979)

Let $\boldsymbol{Q}=\boldsymbol{C} \cdot \mathbf{1}+\boldsymbol{C} \cdot \boldsymbol{e}_{1}+\boldsymbol{C} \cdot \boldsymbol{e}_{2}+\boldsymbol{C} \cdot \boldsymbol{e}_{1} \boldsymbol{e}_{2}$ be the quaternion algebra over \boldsymbol{C} defined by $e_{1}^{2}=e_{2}^{2}=-1$ and $e_{1} e_{2}=-e_{2} e_{1}$. Then the conjugate \bar{x} of an element $x=x_{0} \cdot 1+x_{1} \boldsymbol{e}_{1}+x_{2} \boldsymbol{e}_{2}+x_{3} \boldsymbol{e}_{1} \boldsymbol{e}_{2}$ of \boldsymbol{Q} is given by $\bar{x}=x_{0} \cdot \mathbf{1}-x_{1} \boldsymbol{e}_{1}-x_{2} \boldsymbol{e}_{2}$ $-x_{3} \boldsymbol{e}_{1} \boldsymbol{e}_{2}$. We define the Cayley algebra (the octanion algebra) $\mathfrak{R}=\boldsymbol{Q}+\boldsymbol{Q e}$ by $(q+r \boldsymbol{e}) \cdot(s+t \boldsymbol{e})=(q s-\bar{t} r)+(t q+r \bar{s}) \boldsymbol{e}$ for $q, r, s, t \in \boldsymbol{Q}$. Then the conjugate \bar{y} of an element $y=y_{1}+y_{2} \boldsymbol{e}$ of Ω is given by $\bar{y}=\bar{y}_{1}-y_{2} e$ for $y_{1}, y_{2} \in$ \boldsymbol{Q}. Put $A_{1}=\boldsymbol{R} \otimes_{R} \boldsymbol{C}=\boldsymbol{C} \cdot \mathbf{1}, \boldsymbol{A}_{2}=\boldsymbol{C} \otimes_{R} \boldsymbol{C}=\boldsymbol{C} \cdot \mathbf{1}+\boldsymbol{C} \cdot \boldsymbol{e}_{1}, \boldsymbol{A}_{4}=\boldsymbol{H} \otimes_{R} \boldsymbol{C}=\boldsymbol{Q}$ and A_{8} $=\mathfrak{R}_{R} \otimes_{R} C=$, Let V_{l} be the totality of 3×3 hermitian matrices over $\boldsymbol{A}_{l}(l=1,2,4,8)$ and let \boldsymbol{G}_{l} be the group $\boldsymbol{S L}\left(3, \boldsymbol{A}_{l}\right)(l=1,2,4)$ and $\boldsymbol{E}_{6}(l=8)$. Then the group \boldsymbol{G}_{ℓ} acts on V_{l} by $\rho_{l}(g) X=g X^{t} \bar{g}$ for $g \in \boldsymbol{G}, X \in V_{l}$ $(l=1,2,4)$ and $\rho_{8}=\boldsymbol{\Lambda}_{1}$. Moreover, for $n \geq 1$, the group $\boldsymbol{G}_{l} \times \boldsymbol{G L}(n)$ has the action $\rho_{l} \otimes \boldsymbol{\Lambda}_{1}$ on $\boldsymbol{V}=V_{l} \otimes \boldsymbol{V}(n) \cong V_{l} \oplus \cdots \oplus V_{l}$ (n-copies) by $X \mapsto\left(\rho_{l}\left(g_{1}\right) X_{1}\right.$, $\left.\cdots, \rho_{l}\left(g_{1}\right) X_{n}\right) g_{2}$, for $X=\left(X_{1}, \cdots, X_{n}\right) \in \boldsymbol{V}$ and $g=\left(g_{1}, g_{2}\right) \in \boldsymbol{G}_{l} \times \boldsymbol{G L}(n)$. This triplet $\boldsymbol{P}_{l, n}=\left(\boldsymbol{G}_{l} \times \boldsymbol{G} \boldsymbol{L}(n), \rho_{l} \otimes \boldsymbol{\Lambda}_{1}, \boldsymbol{V}_{l} \otimes \boldsymbol{V}(n)\right)$ is a regular irreducible prehomogeneous vector space for $n=1,2$ and $l=1,2,4,8$. In this article, we give the classification of their orbit spaces, the holonomy diagrams and the b-functions of their relative invariants.

In the case of $l=1$, this work was first done by Prof. M. Sato. In the case of $l=2$, this work was first done in the summar seminor for the study of the prehomogeneous vector spaces in 1974 by the participants including the authors, and reported by J. Sekiguchi in [4].
\S 1. Any relative invariant $f(X)$ of $P_{l, n}(n=1,2)$ is written as $f(X)=c f_{l, n}(X)^{m}(c \in \boldsymbol{C}, m \in \boldsymbol{Z})$ with some irreducible polynomial $f_{l, n}(X)$. For an element X of V_{l}, we can define the determinant $\operatorname{det} X$ (see [1]). Then we have $f_{l, 1}(X)=\operatorname{det} X$ for $X \in V_{l} . \quad$ For $n=2, f_{l, 2}(X)$ is given by the discriminant $\left(z_{1}^{2} z_{2}^{2}+18 z_{0} z_{1} z_{2} z_{3}-4 z_{0} z_{2}^{3}-4 z_{1}^{3} z_{3}-27 z_{0}^{2} z_{3}^{2}\right)$ of the binary cubic form det $\left(u X_{1}+v X_{2}\right)=\sum_{i=0}^{3} z_{i} u^{3-i} v^{i}$ for $X=\left(X_{1}, X_{2}\right) \in V_{l} \oplus V_{l}$. We have $\operatorname{deg} f_{l, 1}=3$ and $\operatorname{deg} f_{l, 2}=12$.
§2. Put $\varphi(x)=\binom{x_{0}+\sqrt{-1} x_{1},-x_{2}-\sqrt{-1} x_{3}}{x_{2}-\sqrt{-1} x_{3}, x_{0}-\sqrt{-1} x_{1}}$ for $x=x_{0} \cdot 1+x_{1} \boldsymbol{e}_{1}+x_{2} e_{2}$ $+x_{3} \boldsymbol{e}_{1} \boldsymbol{e}_{2} \in \boldsymbol{Q}$. This gives an isomorphism $\varphi: \boldsymbol{A}_{4} \leftrightarrows \boldsymbol{M}_{2}(\boldsymbol{C})$ which induces $\boldsymbol{A}_{2} \leftrightharpoons\left\{\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right) ; x, y \in \boldsymbol{C}\right\}$ and $\boldsymbol{A}_{1} \Im\left\{\left(\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right) ; x \in \boldsymbol{C}\right\}$. We define the isomor-
*) Department of Mathematics, Nagoya University.
**) Department of Mathematics, Kôchi University.

