88. The Range of Picard Dimensions*

By Mitsuru Nakai
Department of Mathematics, Nagoya Institute of Technology

(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1979)

1. Densities and Picard dimensions. We will view the punctured unit disk $\Omega: 0<|z|<1$ as an end of $0<|z| \leqq+\infty$, a parabolic Riemann surface, so that the unit circle $|z|=1$ is the relative boundary $\partial \Omega$ of Ω and the origin $z=0$ is the single ideal boundary component $\delta \Omega$ of Ω. A density P on Ω is a nonnegative locally Hölder continuous function $P(z)$ on $\bar{\Omega}: 0<|z| \leqq 1$ which may or may not have a singularity at $\delta \Omega$. We denote by $P P(\Omega ; \partial \Omega)$ the class of nonnegative solutions u of Δu $=P u$ on Ω with vanishing boundary values on $\partial \Omega$. We also denote by $P P_{1}(\Omega ; \partial \Omega)$ the subclass of $P P(\Omega ; \partial \Omega)$ consisting of functions u with the normalization $u(a)=1$ for some fixed point a in Ω. We denote by ex. $P P_{1}(\Omega ; \partial \Omega)$ the set of extreme points in the convex set $P P_{1}(\Omega ; \partial \Omega)$. The cardinal number \#(ex. $P P_{1}(\Omega ; \partial \Omega)$) of ex. $P P_{1}(\Omega ; \partial \Omega)$ will be referred to as the Picard dimension, $\operatorname{dim} P$ in notation, of a density P at $\delta \Omega$:

$$
\text { (1) } \quad \operatorname{dim} P=\#\left(\operatorname{ex.} P P_{1}(\Omega ; \partial \Omega)\right) .
$$

It is easily seen (cf. e.g. [7]) that $\operatorname{dim} P \geqq 1$ for any density P on Ω. A density P on Ω with $\operatorname{dim} P=1$ is said to satisfy the Picard principle at $\delta \Omega$.
2. Problem and result. We denote by $\mathscr{D}(\Omega)$ the class of densities on Ω. Consider the mapping $\operatorname{dim}: \mathscr{D}(\Omega) \rightarrow\{$ cardinal numbers $\}$ defined by $P_{\mapsto} \mapsto \operatorname{dim} P$. We proposed to study the range $\operatorname{dim} \mathscr{D}(\Omega)=\{\operatorname{dim} P$; $P \in \mathscr{D}(\Omega)\}$ of the mapping dim in our former paper (cf. [5]). Virtually nothing has been known on $\operatorname{dim} \mathscr{D}(\Omega)$ except for the following simple fact (cf. [4], [6], [2]) :

$$
\operatorname{dim} P_{\lambda}= \begin{cases}1 & (\lambda \leqq 2) \\ c & (\lambda>2)\end{cases}
$$

where P_{λ} is the density on Ω given by $P_{\lambda}(z)=|z|^{-\lambda}$ for real numbers λ and c is the cardinal number of continuum. In view of this our problem is to determine whether the range $\operatorname{dim} \mathscr{D}(\Omega)$ contains cardinal numbers between 1 and c. Specifically we are interested in the question whether $\operatorname{dim} \mathscr{D}(\Omega)$ contains every countable cardinal numbers ξ, i.e. $\xi=n$, a positive integer, or $\xi=\mathfrak{a}$, the cardinal number of countably infinite set. The purpose of this note is to announce and also to give
*) This work was supported by a Grant-in-Aid for Scientific Research, the Japan Ministry of Education, Science, and Culture.

