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1. Densities and Picard dimensions. We will view the punctured
unit disk 2:0<|z|<1 as an end of 0<|z|< + o0, a parabolic Riemann
surface, so that the unit circle |2|=1 is the relative boundary 92 of 2
and the origin z=0 is the single ideal boundary component 52 of Q.
A density P on Q2 is a nonnegative locally Holder continuous function
P(2) on £:0<|z|<1 which may or may not have a singularity at 52.
‘We denote by PP(2;02) the class of nonnegative solutions « of du
=Py on. 2 with vanishing boundary values on 82. We also denote by
PP,(2;0%2) the subclass of PP(Q2;02) consisting of functions % with
the normalization u(a)=1 for some fixed point a¢ in 2. We denote by
ex. PP,(Q;0Q2) the set of extreme points in the convex set PP,(2; 092).
The cardinal number #(ex. PP,(2;02)) of ex.PP,(2;02) will be
referred to as the Picard dimension, dim P in notation, of a density
Patof:

(1) dim P=#}(ex. PP (92 ; 3%2)).

It is easily seen (cf. e.g. [7]) that dim P>=1 for any density P on 2.
A density P on 2 with dim P=1 is said to satisfy the Picard principle
at 00.

2. Problem and result. We denote by 9(£2) the class of densities
on 2. Consider the mapping dim: P(2)—{cardinal numbers} defined
by P—dim P. We proposed to study the range dim D(2)={dim P;
P e D)} of the mapping dim in our former paper (cf. [5]). Virtually
nothing has been known on dim 9D(2) except for the following simple

fact (cf. [4], [6], [2]):
dim P, = {: (=2)

(2>2)
where P, is the density on 2 given by P,(z)=|z|"* for real numbers 1
and c is the cardinal number of continuum. In view of this our pro-
blem is to determine whether the range dim 9(2) contains cardinal
numbers between 1 and c. Specifically we are interested in the question
whether dim 9(2) contains every countable cardinal numbers &, i.e.
&=m, a positive integer, or £=a, the cardinal number of countably
infinite set. The purpose of this note is to announce and also to give
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