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1. Introduction. In the study of the limit distributions of
multi-type Galton-Watson processes, S. Sugitani [2] has discovered
that if a nonnegative function (¢, 1), defined for £=>0, 1=>0, satisfies
the ordinary differential equation having 1 as a parameter
where B>0, m=>0 and p(t) is a polynomial with positive coefficients,
then there exists for each ¢ >0 an infinitely divisible distribution v, on
[0, o) such that

(2) exp {—I: (s, X)ds} =J: e "y (dx).

Further information on v, is given in [3].

In this note we will prove a stronger result that exp {--(¢, D} is
the Laplace transform of some infinitely divisible distribution 4, on
[0, ). Our proof is quite elementary and can be applied to more
general equations.

2. A heuristic argument. Given f(x), g(¢t,2) and k(1) defined
for x e (— oo, ), te [0, T], 2¢ [0, o), consider the following ordinary
differential equation having 1 as a parameter;

(3) V= f)+9(, ), (0, )= h(A).
For the moment, we assume that equation (3) has a unique solution
(¢, ) in [0, T1x [0, o0). Here and after we will write ' for D (¢, 2), f™
for D2f, g,.(t, 2) for D?g(t, 2) and so on. We now seek a suitable con-
dition in order that (¢, 1) is completely monotonic in 1< (0, o) for
each t=0. The essential part of our condition is that — f®(.), g,(¢, -)
for each tel0,T] and h,(-) are completely monotonic in (0, o). To
show the above assertion, differentiating (3) with respect to 2, we
have

Yi=F PN+ 9.8, D, Y0, D) =h,(2).
Since g¢,(t, )=0 and h,(2)=0, it follows that v, (t, )=0. Similarly, n-
times differentiation of (3) leads us to
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