74. A Note on Modular Forms mod p

By Masao Koike

Department of Mathematics, Faculty of Sciences, Nagoya University

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1979)

Let N be a positive integer and χ be a Dirichlet character mod N. Let $\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) \, | \, c \equiv 0 \pmod{N} \right\}$. Let f(z) be a cusp form of weight k satisfying

$$f(\sigma(z)) = (cz+d)^k \chi(d) f(z)$$
 for all $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$.

Then we call f(z) a cusp form of type (k, χ) on $\Gamma_0(N)$, and we denote by $S_k(N, \chi)$ the space of all cusp forms of type (k, χ) on $\Gamma_0(N)$.

From now we fix a prime number $p,p \ge 5$. Let N be a positive integer such that (p,N)=1. Let ψ and χ be any Dirichlet characters mod N and mod p respectively such that $\psi\chi(-1)=1$. Let t be the order of χ and put $\kappa=\frac{(p-1)(t-a)}{t}$ with an integer a such that $1\le a\le t$

and (a, t)=1. Let k be any even positive integer. Then we can prove the following simple identities between dimensions of spaces of cusp forms by using Hijikata's trace formula [1]:

Theorem 1. The notations being as above, we have $\dim_{\mathcal{C}} S_{k}(Np, \psi\chi) = \dim_{\mathcal{C}} S_{(p+1)k/2-\epsilon}(N, \psi) + \dim_{\mathcal{C}} S_{(p+1)k/2-(p-1-\epsilon)}(N, \psi).$

As an application of Theorem 1, we can study some properties of cusp forms mod p in the sense of Serre and Swinnerton-Dyer.

We fix our notations. We may fix N, ψ and k. Take an algebraic number field K of finite degree over the rational number field which contains all eigenvalues of all Hecke operators acting on $S_k(Np,\psi\chi)$ for all Dirichlet characters χ mod p and on $S_{k'}(N,\psi)$ for all $k' \leq \frac{k}{2}(p+1)$,

and p-th roots of unity. We fix a prime divisor $\mathfrak p$ of K lying over p. Let ν be the normalized valuation of K attached to $\mathfrak p$ so that $\nu(p) = p^{-1}$ and $\mathfrak o = \{\alpha \in K | \nu(\alpha) \le 1\}$, $F = \mathfrak o/\mathfrak p$.

For any Dirichlet character $\chi \mod p$, let

$$egin{aligned} V_{\mathbf{x}} &= \Big\{ f(z) = \sum\limits_{n=1}^{\infty} a_n q^n \in S_k(Np, \psi\chi) \, | \, a_n \in K \quad ext{for all } n \geq 1 \Big\}, \ V_{k'} &= \Big\{ g(z) = \sum\limits_{n=1}^{\infty} b_n q^n \in S_{k'}(N, \psi) \, | \, b_n \in K \quad ext{for all } n \geq 1 \Big\}, \end{aligned}$$

where $q = e^{2\pi i z} \cdot V_{\chi}$ and $V_{k'}$ are vector spaces over K with same dimensions as those of $S_k(Np, \psi\chi)$ and $S_{k'}(N, \psi)$ over the complex number field.