72. Homotopy Classification of Connected Sums of Sphere Bundles over Spheres. I^{*)}

By Hiroyasu Ishimoto

Department of Mathematics, Faculty of Science, Kanazawa University

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1979)

1. Statement of Results. Let A be a p-sphere bundle over a q-sphere (p, q > 1) which admits a cross-section, and consider the following diagram which is commutative up to sign.

Here, $P = [\ , \iota_p]$ means the Whitehead product with the orientation generator ι_p of $\pi_p(S^p)$. We denote the characteristic element of A by $\alpha(A)$. Let $\alpha(A) = i_*\xi$, $\xi \in \pi_{q-1}(SO_p)$. Then, $\{J\xi\} \in J\pi_{q-1}(SO_p)/P\pi_q(S^p)$ does not depend on the choice of ξ . We denote it by $\lambda(A)$ (James-Whitehead [4]).

Let A_i , i=1, 2, ..., r, be *p*-sphere bundles over *q*-spheres which admit cross-sections. It is understood that each A_i also denotes the total space of the bundle and has the differentiable structure induced from those of the fibre and the base space. $\sharp_{i=1}^r A_i$ means the connected sum $A_1 \sharp A_2 \sharp \cdots \sharp A_r$.

As an extension of James-Whitehead [4], we have the following

Theorem 1. Let $A_i, A'_i, i=1, 2, ..., r$, be p-sphere bundles over q-spheres which admit cross-sections, and assume that 2p > q+1, q > 1, $p \neq q$. Then, the connected sums $\sharp_{i=1}^r A_i, \ \sharp_{i=1}^r A'_i$ are of the same homotopy type if and only if there exists a unimodular $(r \times r)$ -matrix L of integer components such that

$$\begin{pmatrix} \lambda(A_1') \\ \vdots \\ \lambda(A_r') \end{pmatrix} = L \begin{pmatrix} \lambda(A_1) \\ \vdots \\ \lambda(A_r) \end{pmatrix},$$

where the abelian group $J_{\pi_{q-1}}(SO_p)/P_{\pi_q}(S^p)$ is considered as a left Z-module.

Furthermore, we have the following

Theorem 2. Even if 2p = q+1, the conclusion of Theorem 1 holds also if p is odd and p, q > 1.

Let p=q. In this case, $\lambda(A_i)$, $\lambda(A'_i)$ belong to $J\pi_{p-1}(SO_p)/P\pi_p(S^p)$

⁽⁾ Dedicated to Professor A. Komatu for his 70th birthday.