71. J.Compatible Orthodox Semigroups

By Miyuki YAMADA

Department of Mathematics, Shimane University

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1979)

A semigroup S is said to be *J*-compatible if Green's *J*-relation is a congruence on S. In this paper, we shall study the structure of *J*compatible orthodox semigroups.

1. Basic properties. Let S be a regular semigroup. Throughout this paper, the J-relation and the D-relation on S will be denoted by \mathcal{J}_s and \mathcal{D}_s respectively. Further, the congruence generated by $\mathcal{J}_s[\mathcal{D}_s]$ will be denoted by $\mathcal{J}_{s}^{*}[\mathcal{D}_{s}^{*}]$. Let η_{s} be the least semilattice congruence Then, it has been shown by Hall [2] that $\mathcal{D}_s^* = \eta_s$. Further, it on S. is easily seen that $\mathcal{D}_s \subset \mathcal{J}_s \subset \eta_s$. In fact, if $(a, b) \in \mathcal{D}_s$ then there exists $c \in S$ such that $a \mathcal{L}_s c \mathcal{R}_s b$, where \mathcal{L}_s and \mathcal{R}_s denote the L-relation and the *R*-relation on *S* respectively. Hence, Sa = Sc and cS = bS. Accordingly, SaS = ScS = SbS. Therefore, $(a, b) \in \mathcal{J}_s$. Since η_s is the least semilattice congruence on S, S is a semilattice Γ of the η_s -classes $\{S_r : r \in \Gamma\}$ (in this case, $\Gamma \cong S/\eta_s$) and each S_r is semilattice-indecomposable. If $a\mathcal{J}_s b$, then SaS = SbS. Hence, there exist $x, y \in S^1$ and $u, v \in S^1$ such that uav = b and xby = a. Let $a \in S_a$ and $b \in S_b$. Since uav = b, it follows that $\beta \leq \alpha$. On the other hand, $\alpha \leq \beta$ follows from xby=a. Hence, $\alpha = \beta$. Consequently, $a\eta_s b$. Thus, $\mathcal{G}_s \subset \eta_s$.

Since $\mathcal{D}_{s}^{*}=\eta_{s}$, we have $\mathcal{J}_{s}^{*}=\eta_{s}$. Hence, $\mathcal{D}_{s}^{*}=\mathcal{J}_{s}^{*}=\eta_{s}$. In particular, if S is J-compatible then $\mathcal{D}_{s}^{*}=\mathcal{J}_{s}=\eta_{s}$.

Theorem 1. For a regular [orthodox] semigroup S, the following conditions are equivalent:

(1) S is J-compatible.

(2) $\mathcal{J}_s = \eta_s$.

(3) S is a semilattice of simple regular [orthodox] semigroups.

(4) $J(a) \cap J(b) = J(ab)$ for $a, b \in S$ (where J(x) = SxS); hence, the principal ideals of S form a semilattice under intersection.

Proof. (1) \Rightarrow (2): This was already proved above. The part "(2) \Rightarrow (3)" follows from Petrich [6, p. 43]. Further, both "(3) \Rightarrow (4)" and "(4) \Rightarrow (1)" follow from Clifford and Preston [1, p. 123].

If $\mathcal{D}_{s}^{*}=S\times S$ for a semigroup S, then S is said to be D*-simple.

Theorem 2. If a regular semigroup S is simple, then S is D^* -simple.

Proof. As was shown above, $\mathcal{D}_s^* = \eta_s$. Since S is simple, η_s is the universal relation. Hence, \mathcal{D}_s^* is also the universal relation. That is,