59. Isomorphism Criterion and Structure Group Description for N-Semigroups

By James M. LORD
University of California, Davis
(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1979)

- o. Introduction. A commutative cancellative archimedean semigroup without idempotents is called an \Re -semigroup. In this paper, necessary and sufficient conditions are given for two \Re -semigroups to be isomorphic and the structure groups of an \Re -semigroup are completely described. M. Sasaki did some related work in [1], but the results given here are simpler. In [2], T. Tamura obtained an isomorphism criterion from a different point of view.
- 1. Preliminaries. Let S be any \mathfrak{R} -semigroup and let $a \in S$. Define a group-congruence ρ_a on S by $x\rho_a y$ if and only if $a^m x = a^n y$ for some $m, n \in Z_+$ (the positive integers). The group $G_a = S/\rho_a$ is called the structure group of S with respect to a. Structure group products will be denoted by "*" in this paper. Let $p \in S$. If $p \notin aS$, p is called a prime (relative to a). Every $x \in S$ has a unique representation $x = a^k p$ where $k \in Z_+^0$ ($a^0 p$ means p) and $p \in S$ is a prime. By the fundamental structure theorems for \mathfrak{R} -semigroups [2], we may assume $S = (G; I) = (G; \varphi)$, that is, $S = \{(x, \xi) : x \in Z_+^0, \xi \in G\}$ where $(x, \xi)(y, \eta) = (x + y + I(\xi, \eta), \xi * \eta)$ and $I(\xi, \eta) = \varphi(\xi) + \varphi(\eta) \varphi(\xi * \eta)$ for all $\xi, \eta \in G$. Let $(m, \alpha) \in S$. The structure group $G_{(m,\alpha)} = S/\rho$ is of major importance in this paper. Observe that $G_{(m,\alpha)} = \{(x, \xi) : (x, \xi) \text{ is prime relative to } (m, \alpha)\}$. For a more thorough review of \mathfrak{R} -semigroups, see [2].
- **2.** Isomorphism criterion. Theorem **2.1.** Let $S = (G; I) = (G; \varphi)$ and $\hat{S} = (\hat{G}; \hat{I}) = (\hat{G}; \hat{\varphi})$. Then S is isomorphic to \hat{S} if and only if there exists $(m, \alpha) \in S$ such that
 - (2.1.1) $G_{(m,\alpha)}$ is isomorphic to \hat{G} and
- (2.1.2) $\hat{\varphi}(\hat{\xi}) + \hat{\varphi}(\hat{\gamma}) \hat{\varphi}(\hat{\xi} * \hat{\gamma}) = (x + \varphi(\xi) + y + \varphi(\eta) (z + \varphi(\gamma)))/(m + \varphi(\alpha))$ holds for all $\hat{\xi}, \hat{\eta} \in \hat{G}$ where $(x, \xi), (y, \eta),$ and (z, γ) are the unique primes in S relative to (m, α) such that the isomorphism in (2.1.1) carries $(x, \xi), (y, \eta),$ and (z, γ) to $\hat{\xi}, \hat{\eta},$ and $\hat{\xi} * \hat{\eta}$ respectively.
- Proof. Necessity. Assume $f: S \to \hat{S}$ is the isomorphism and let $f(m,\alpha) = (0,\hat{\epsilon})$. Define $\iota: \hat{G}_{(0,\hat{\epsilon})} \to \hat{G}$ by $\iota(0,\hat{\xi}) = \hat{\xi}$ and $\hat{f}: G_{(m,\alpha)} \to \hat{G}_{(0,\hat{\epsilon})}$ by $\hat{f}(x,\xi) = f(x,\xi)$. Then $\iota \circ \hat{f}$ is an isomorphism of $G_{(m,\alpha)}$ onto \hat{G} . To prove (2.1.2), let $\hat{\xi}$, $\hat{\eta} \in \hat{G}$ and let (x,ξ) , (y,η) , and (z,γ) be the primes relative to (m,α) such that $(\iota \circ \hat{f})(x,\xi) = \hat{\xi}$, $(\iota \circ \hat{f})(y,\eta) = \hat{\eta}$, and $(\iota \circ \hat{f})(z,\gamma) = \hat{\xi} * \hat{\eta}$. Then $f(x,\xi) = (0,\hat{\xi})$, $f(y,\eta) = (0,\hat{\eta})$, and $f(z,\gamma) = (0,\hat{\xi} * \hat{\eta})$. Define