59. Isomorphism Criterion and Structure Group Description for R-Semigroups

By James M. Lord
University of California, Davis
(Communicated by Kôsaku Yosida, m. J. A., Sept. 12, 1979)

o. Introduction. A commutative cancellative archimedean semigroup without idempotents is called an \mathfrak{n}-semigroup. In this paper, necessary and sufficient conditions are given for two \mathfrak{l}-semigroups to be isomorphic and the structure groups of an \mathfrak{N}-semigroup are completely described. M. Sasaki did some related work in [1], but the results given here are simpler. In [2], T. Tamura obtained an isomorphism criterion from a different point of view.

1. Preliminaries. Let S be any \mathfrak{R}-semigroup and let $a \in S$. Define a group-congruence ρ_{a} on S by $x \rho_{a} y$ if and only if $\alpha^{m} x=\alpha^{n} y$ for some $m, n \in Z_{+}$(the positive integers). The group $G_{a}=S / \rho_{a}$ is called the structure group of S with respect to a. Structure group products will be denoted by "*" in this paper. Let $p \in S$. If $p \notin a S, p$ is called a prime (relative to a). Every $x \in S$ has a unique representation $x=a^{k} p$ where $k \in Z_{+}^{0}\left(a^{0} p\right.$ means $\left.p\right)$ and $p \in S$ is a prime. By the fundamental structure theorems for \mathfrak{N}-semigroups [2], we may assume $S=(G ; I)=(G ; \varphi)$, that is, $S=\left\{(x, \xi): x \in Z_{+}^{0}, \xi \in G\right\}$ where $(x, \xi)(y, \eta)$ $=(x+y+I(\xi, \eta), \xi * \eta)$ and $I(\xi, \eta)=\varphi(\xi)+\varphi(\eta)-\varphi(\xi * \eta)$ for all $\xi, \eta \in G$. Let $(m, \alpha) \in S$. The structure group $G_{(m, \alpha)}=S / \rho$ is of major importance in this paper. Observe that $G_{(m, \alpha)}=\{\overline{(x, \xi)}:(x, \xi)$ is prime relative to (m, α) \}. For a more thorough review of $\mathfrak{\Re \text { -semigroups, see [2]. }}$
2. Isomorphism criterion. Theorem 2.1. Let $S=(G ; I)=(G ; \varphi)$ and $\hat{S}=(\hat{G} ; \hat{I})=(\hat{G} ; \hat{\varphi})$. Then S is isomorphic to \hat{S} if and only if there exists $(m, \alpha) \in S$ such that
(2.1.1) $G_{(m, \alpha)}$ is isomorphic to \hat{G} and
(2.1.2) $\hat{\varphi}(\hat{\xi})+\hat{\varphi}(\hat{r})-\hat{\varphi}(\hat{\xi} * \hat{\eta})=(x+\varphi(\xi)+y+\varphi(\eta)-(z+\varphi(\gamma))) /(m+\varphi(\alpha))$ holds for all $\hat{\xi}, \hat{\eta} \in \hat{G}$ where $(x, \xi),(y, \eta)$, and (z, γ) are the unique primes in S relative to (m, α) such that the isomorphism in (2.1.1) carries $\overline{(x, \xi)}, \overline{(y, \eta)}$, and $\overline{(z, \gamma)}$ to $\hat{\xi}, \hat{\eta}$, and $\hat{\xi} * \hat{\eta}$ respectively.

Proof. Necessity. Assume $f: S \rightarrow \hat{S}$ is the isomorphism and let $f(m, \alpha)=(0, \hat{\varepsilon})$. Define $\iota: \hat{G}_{(0, \hat{\varepsilon})} \rightarrow \hat{G}$ by $\iota(0, \hat{\xi})=\hat{\xi}$ and $\hat{f}: G_{(m, \alpha)} \rightarrow \hat{G}_{(0, \hat{\varepsilon})}$ by $\hat{f} \overline{(x, \xi)}=f \overline{(x, \xi)}$. Then $\circ \hat{f}$ is an isomorphism of $G_{(m, \alpha)}$ onto \hat{G}. To prove (2.1.2), let $\hat{\xi}, \hat{\eta} \in \hat{G}$ and let $(x, \xi),(y, \eta)$, and (z, γ) be the primes relative to (m, α) such that $(\iota \circ \hat{f}) \overline{(x, \xi)}=\hat{\xi},(\iota \hat{f}) \overline{(y, \eta)}=\hat{\eta}$, and $(\iota \circ \hat{f}) \overline{(z, \gamma)}$ $=\hat{\xi} * \hat{\eta}$. Then $f(x, \hat{\xi})=(0, \hat{\xi}), f(y, \eta)=(0, \hat{\eta})$, and $f(z, \gamma)=(0, \hat{\xi} * \hat{\eta})$. Define

