58. Identities E-2 and Exponentiality

By J. Clarke, R. Pfiefer, and T. Tamura
Department of Mathematics, University of California, Davis
(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1979)

1. Introduction. Let S be a semigroup and Z_{+}the set of positive integers, and $Z_{+}^{0}=Z_{+} \cup\{0\}$. Define $E(S)$ by

$$
E(S)=\left\{n \in Z_{+}:(a b)^{n}=a^{n} b^{n} \quad \text { for all } a, b \in S\right\}
$$

$E(S)$ is a multiplicative semigroup containing 1. A semigroup is called an E-n semigroup [3] if $n \in E(S)$. If $E(S)=Z_{+}$, then S is called exponential. In some semigroups, $E-2$ implies exponentiality, for example, this holds for groups, cancellative semigroups or inverse semigroups [4]. More generally, regular $E-2$ semigroups are exponential [3]. Recently A. Cherubini Spoletini and A. Varisco [1] obtained that a power cancellative $E-2$ semigroup is exponential and also they have

Proposition 1 ([1]). Let S be a semigroup. If $n \in E(S)$ then $n+\lambda n(n-1) \in E(S)$ for all $\lambda \in Z_{+}^{0}$. Hence if $2 \in E(S)$ then $2 n \in E(S)$ for all $n \in Z_{+}$.

As is well known [2], if S is a group and $E(S)$ contains three consecutive integers then $E(S)=Z_{+}$. In parallel to this,

Proposition 2 ([5]). Let S be a semigroup. If 2, $n, n+1$ and $n+2$ are in $E(S)$ then $\left\{m \in Z_{+}: m \geq n\right\} \subset E(S)$. Therefore, if S is $E-2$ and $E-3$, then S is exponential.

In this paper, Theorem 3 will improve Proposition 2 and the second part of Proposition 1 so that we shall be able to completely describe $E(S)$ when $2 \in E(S)$.
2. Results. Theorem 3. Let S be a semigroup. If $2 \in E(S)$, then $m \in E(S)$ for all $m \geq 4$.

Proof. Since $2 \in E(S)$ implies $4 \in E(S)$, it is sufficient to verify the following : If $n>2$ and $2, n \in E(S)$, then $n+1 \in E(S)$.

In case n is odd, $n-1$ is even, so let $n-1=2 k$. Then

$$
\begin{aligned}
x^{n+1} y^{n+1} & =x\left(x^{n} y^{n}\right) y=x(x y)^{n} y=x^{2}(y x)^{n-1} y^{2} \\
& =x^{2}\left((y x)^{k}\right)^{2} y^{2}=\left(x(y x)^{k}\right)^{2} y^{2}=\left((x y)^{k} x\right)^{2} y^{2} \\
& =(x y)^{2 k} x^{2} y^{2}=(x y)^{n-1}(x y)^{2}=(x y)^{n+1} .
\end{aligned}
$$

In case n is even, let $n-2=2 k$. Then

$$
\begin{aligned}
x^{n+1} y^{n+1} & =x\left(x^{n} y^{n}\right) y=x(x y)^{n} y=x^{2}(y x)^{n-1} y^{2} \\
& =x^{2}(y x)^{n-3}(y x)^{2} y^{2}=x^{2}(y x)^{n-3}(y x y)^{2} \\
& =x^{2}(y x)^{n-2} y^{2} x y=x^{2}\left((y x)^{k}\right)^{2} y^{2} x y \\
& =\left(x(y x)^{k}\right)^{2} y^{2} x y=\left((x y)^{k} x\right)^{2} y^{2} x y=(x y)^{2 k} x^{2} y^{2} x y \\
& =(x y)^{n-2}(x y)^{2}(x y)=(x y)^{n+1} .
\end{aligned}
$$

