58. Identities E-2 and Exponentiality

By J. CLARKE, R. PFIEFER, and T. TAMURA

Department of Mathematics, University of California, Davis

(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1979)

1. Introduction. Let S be a semigroup and Z_+ the set of positive integers, and $Z_+^0 = Z_+ \cup \{0\}$. Define E(S) by

 $E(S) = \{ n \in \mathbb{Z}_+ : (ab)^n = a^n b^n \quad \text{for all } a, b \in S \}.$

E(S) is a multiplicative semigroup containing 1. A semigroup is called an *E-n* semigroup [3] if $n \in E(S)$. If $E(S) = Z_+$, then *S* is called *exponential*. In some semigroups, *E-2* implies exponentiality, for example, this holds for groups, cancellative semigroups or inverse semigroups [4]. More generally, regular *E-2* semigroups are exponential [3]. Recently A. Cherubini Spoletini and A. Varisco [1] obtained that a power cancellative *E-2* semigroup is exponential and also they have

Proposition 1 ([1]). Let S be a semigroup. If $n \in E(S)$ then $n + \lambda n(n-1) \in E(S)$ for all $\lambda \in Z_+^0$. Hence if $2 \in E(S)$ then $2n \in E(S)$ for all $n \in Z_+$.

As is well known [2], if S is a group and E(S) contains three consecutive integers then $E(S)=Z_+$. In parallel to this,

Proposition 2 ([5]). Let S be a semigroup. If 2, n, n+1 and n+2 are in E(S) then $\{m \in \mathbb{Z}_+ : m \ge n\} \subset E(S)$. Therefore, if S is E-2 and E-3, then S is exponential.

In this paper, Theorem 3 will improve Proposition 2 and the second part of Proposition 1 so that we shall be able to completely describe E(S) when $2 \in E(S)$.

2. Results. Theorem 3. Let S be a semigroup. If $2 \in E(S)$, then $m \in E(S)$ for all $m \ge 4$.

Proof. Since $2 \in E(S)$ implies $4 \in E(S)$, it is sufficient to verify the following: If n > 2 and 2, $n \in E(S)$, then $n + 1 \in E(S)$.

In case n is odd, n-1 is even, so let n-1=2k. Then

 $\begin{aligned} x^{n+1}y^{n+1} &= x(x^ny^n)y = x(xy)^n y = x^2(yx)^{n-1}y^2 \\ &= x^2((yx)^k)^2 y^2 = (x(yx)^k)^2 y^2 = ((xy)^k x)^2 y^2 \\ &= (xy)^{2k} x^2 y^2 = (xy)^{n-1} (xy)^2 = (xy)^{n+1}. \end{aligned}$ In case *n* is even, let n-2=2k. Then $x^{n+1}y^{n+1} = x(x^ny^n)y = x(xy)^n y = x^2(yx)^{n-1}y^2 \\ &= x^2(yx)^{n-3}(yx)^2 y^2 = x^2((yx)^{n-3}(yxy)^2 \\ &= x^2(yx)^{n-2}y^2 xy = x^2((yx)^k)^2 y^2 xy \\ &= (x(yx)^k)^2 y^2 xy = ((xy)^k x)^2 y^2 xy = (xy)^{2k} x^2 y^2 xy \\ &= (xy)^{n-2}(xy)^2 (xy) = (xy)^{n+1}. \end{aligned}$