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1. Introduction. Let S be a semigroup and Z+ the set of positive
integers, and Z+-Z+ U {0}. Define E(S) by

E(S) {n Z+ (ab)=ab for all a, b S}.
E(S) is a multiplicative semigroup containing 1. A semigroup is
called an E-n semigroup [3] if n e E(S). If E(S)= Z/, then S is called
exponential. In some semigroups, E-2 implies exponentiality, for
example, this holds for groups, cancellative semigroups or inverse
semigroups [4]. More generally, regular E-2 semigroups are exponential
[3]. Recently A. Cherubini Spoletini and A. Varisco [1] obtained that
a power cancellative E-2 semigroup is exponential and also they have

Proposition 1 ([1]). Let S be a semigroup. If n e E(S) then
n+2n(n-1) e E(S) for all e Z+. Hence if 2 E(S) then 2n e E(S) for
all n e Z/.

As is well known [2], if S is a group and E(S) contains three con-
secutive integers then E(S)= Z/. In parallel to this,

Proposition 2 ([5]). Let S be a semigroup. If 2, n, n+l and
n/2 are in E(S) then {me Z+" m_n}E(S). Therefore, if S is E-2
and E-3, then S is exponential.

In this paper, Theorem 3 will improve Proposition 2 and the second
part of Proposition 1 so that we shall be able to completely describe
E(S) when 2 e E(S).

2. Results. Theorem 3. Let S be a semigroup. If 2 e E(S),
then m e E(S) for all m_4.

Proof. Since 2 e E(S) implies 4 e E(S), it is sufficient to verify
the following" If n2 and 2, n e E(S), then n + 1 e E(S).

In case n is odd, n-1 is even, so let n-1=2k. Then
X lygxn+ lyn+ X(X y )y--- X(y) y= x2(yx)

X Xx2((y.x))2y2= (x(yx))y2= ((Y) ) Y
(xy)x2y2__ (xy)n-l(xy)2 (xy)=+ 1.

In case n is even, let n--2--2k. Then
Xx+lye/ 1= x(x y )y x(y) y x2(yx)

-8 X--x2(yx)-(yx)y x2(yx) (y Y)
x(yx)-yxy x((yx))yxy
(x(yx))2y2xy ((xy)x)yxy (xy)xyxy

-2 1.(xy) (xy) (xy) (xy) +


